Spaces:
Sleeping
Sleeping
File size: 12,356 Bytes
801501a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import numpy as np
import torch
import torch.nn.functional as F
from transformers import BertModel, BertTokenizer
from salad.model_components.lstm import LSTM
from salad.models.phase1 import Phase1Model
from salad.utils import imageutil, nputil, visutil
from salad.utils.spaghetti_util import (clip_eigenvalues,
generate_zc_from_sj_gaus,
get_mesh_from_spaghetti, load_mesher,
load_spaghetti, project_eigenvectors)
from salad.utils.train_util import get_dropout_mask
from salad.data.dataset import LangSALADDataset
class LangPhase1Model(Phase1Model):
def __init__(self, network, variance_schedule, **kwargs):
super().__init__(network, variance_schedule, **kwargs)
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
if self.hparams.get("use_lstm"):
self.bertmodel = LSTM(
text_dim=768, embedding_dim=768, vocab_size=30522, padding_idx=0
)
else:
self.bertmodel = BertModel.from_pretrained("bert-base-uncased")
if self.hparams.get("text_encoder_freeze"):
for p in self.bertmodel.parameters():
p.requires_grad_(False)
def forward(self, x, text):
"""
Input:
x: [B,G,16]
text: list of length [B]
"""
B, G = x.shape[:2]
text = self.random_mask_text(text)
lang_emb = self.text_to_embedding(text)
return self.get_loss(x, lang_emb)
def tokenizing(self, text):
tokenized = self.tokenizer(
text, return_tensors="pt", padding=True, truncation=True
).to(self.device)
return tokenized
def text_to_embedding(self, text):
"""
text: list of length [B]
return [B,768]
"""
tokenized = self.tokenizing(text)
if self.hparams.get("use_lstm"):
lang_emb, _ = self.bertmodel(tokenized.input_ids)
else:
if self.hparams.get("text_encoder_return_seq"):
lang_emb = self.bertmodel(**tokenized).last_hidden_state
else:
lang_emb = self.bertmodel(**tokenized).pooler_output
if lang_emb.ndim == 2:
lang_emb = lang_emb.unsqueeze(1)
return lang_emb
def random_mask_text(self, text):
text = list(text)
B = len(text)
if self.hparams.get("classifier_free_guidance"):
random_dp_mask = get_dropout_mask(
B, self.hparams.conditioning_dropout_prob, self.device
)
for i in range(B):
if random_dp_mask[i] == 0:
text[i] = ""
return text
def get_loss(self, x0, cond, t=None, noisy_in=False, beta_in=None, e_rand_in=None):
B, G, D = x0.shape
if not noisy_in:
if t is None:
t = self.var_sched.uniform_sample_t(B)
x_noisy, beta, e_rand = self.add_noise(x0, t)
else:
x_noisy = x0
beta = beta_in
e_rand = e_rand_in
e_theta = self.net(x_noisy, beta, cond)
loss = F.mse_loss(e_theta.flatten(), e_rand.flatten(), reduction="mean")
return loss
def step(self, batch, stage: str):
x, text = batch
loss = self(x, text)
self.log(f"{stage}/loss", loss, on_step=stage == "train", prog_bar=True)
return loss
@torch.no_grad()
def sample(
self,
num_samples_or_text,
return_traj=False,
return_cond=False,
classifier_free_guidance=True,
free_guidance_weight=2.0,
):
if isinstance(num_samples_or_text, str):
num_samples_or_text = [num_samples_or_text]
if isinstance(num_samples_or_text, int):
batch_size = num_samples_or_text
ds = self._build_dataset("val")
texts = [ds[i][1] for i in range(batch_size)]
elif isinstance(num_samples_or_text, list):
texts = num_samples_or_text
batch_size = len(num_samples_or_text)
if self.hparams.get("use_zc"):
x_T = torch.randn([batch_size, 16, 512]).to(self.device)
else:
x_T = torch.randn([batch_size, 16, 16]).to(self.device)
G = x_T.shape[1]
lang_emb = self.text_to_embedding(texts)
if classifier_free_guidance:
null_texts = ["" for _ in range(batch_size)]
null_lang_emb = self.text_to_embedding(null_texts)
traj = {self.var_sched.num_steps: x_T}
for t in range(self.var_sched.num_steps, 0, -1):
z = torch.randn_like(x_T) if t > 1 else torch.zeros_like(x_T)
alpha = self.var_sched.alphas[t]
alpha_bar = self.var_sched.alpha_bars[t]
sigma = self.var_sched.get_sigmas(t, flexibility=0)
c0 = 1.0 / torch.sqrt(alpha)
c1 = (1 - alpha) / torch.sqrt(1 - alpha_bar)
x_t = traj[t]
beta = self.var_sched.betas[[t] * batch_size]
e_theta = self.net(x_t, beta=beta, context=lang_emb)
if classifier_free_guidance:
null_e_theta = self.net(x_t, beta=beta, context=null_lang_emb)
w = free_guidance_weight
e_theta = (1 + w) * e_theta - w * null_e_theta
x_next = c0 * (x_t - c1 * e_theta) + sigma * z
traj[t - 1] = x_next.detach()
traj[t] = traj[t].cpu()
if not return_traj:
del traj[t]
if return_traj:
if return_cond:
return traj, lang_emb
return traj
else:
if return_cond:
return traj[0], lang_emb
return traj[0]
def sampling_gaussians(
self,
num_samples_or_text,
classifier_free_guidance=True,
free_guidance_weight=2.0,
return_cond=False,
):
gaus = self.sample(
num_samples_or_text,
classifier_free_guidance=classifier_free_guidance,
free_guidance_weight=free_guidance_weight,
return_cond=return_cond,
)
if isinstance(gaus, tuple):
text = gaus[1]
gaus = gaus[0]
# gaus = reflect_and_concat_gmms(raw_gaus)
if self.hparams.get("global_normalization"):
if not hasattr(self, "data_val"):
self._build_dataset("val")
if self.hparams.get("global_normalization") == "partial":
gaus = self.data_val.unnormalize_global_static(gaus, slice(12, None))
elif self.hparams.get("global_normalization") == "all":
gaus = self.data_val.unnormalize_global_static(gaus, slice(None))
gaus = project_eigenvectors(clip_eigenvalues(gaus))
if return_cond:
return gaus, text
return gaus
def _build_dataset(self, stage):
if hasattr(self, f"data_{stage}"):
return getattr(self, f"data_{stage}")
ds_class = (
LangSALADDataset
)
if stage == "train":
ds = ds_class(**self.hparams.dataset_kwargs)
else:
dataset_kwargs = self.hparams.dataset_kwargs.copy()
dataset_kwargs["repeat"] = 1
ds = ds_class(**dataset_kwargs)
setattr(self, f"data_{stage}", ds)
return ds
def validation_zc(self):
vis_num_shapes = 4
vis_zcs = []
vis_texts = []
ds = self._build_dataset("val")
for i in [0, 1, 2, 3]:
zcs, text = ds[i]
vis_zcs.append(zcs)
vis_texts.append(text)
vis_zcs = torch.stack(vis_zcs, 0)
ldm_zcs = self.sample(vis_texts)
if not hasattr(self, "spaghetti"):
self.spaghetti = load_spaghetti(self.device, self.hparams.spaghetti_tag)
spaghetti = self.spaghetti
if not hasattr(self, "mesher"):
self.mesher = load_mesher(self.device)
mesher = self.mesher
wandb_logger = self.get_wandb_logger()
images = []
for i in range(vis_num_shapes):
try:
v, f = get_mesh_from_spaghetti(spaghetti, mesher, vis_zcs[i], res=128)
gt_img = visutil.render_mesh(v, f, resolution=(256, 256))
except:
pass
try:
v, f = get_mesh_from_spaghetti(spaghetti, mesher, ldm_zcs[i], res=128)
pred_img = visutil.render_mesh(v, f, resolution=(256, 256))
except:
pass
img = imageutil.merge_images([gt_img, pred_img])
img = imageutil.draw_text(
img,
f"Left: GT | Right: Pred \n{vis_texts[i]}",
font_size=14,
max_seq_length=50,
)
images.append([img])
images = imageutil.merge_images(images)
wandb_logger.log_image("vis", [images])
def validation(self):
if self.hparams.get("use_zc"):
self.validation_zc()
return
vis_num_shapes = 4
vis_gaus = []
vis_texts = []
ds = self._build_dataset("val")
vis_indices = [18453, 13036, 13204, 48244]
for i in vis_indices:
gaus, text = ds[i]
vis_gaus.append(gaus)
vis_texts.append(text)
vis_gaus = torch.stack(vis_gaus, 0)
if self.hparams.get("global_normalization"):
if self.hparams.get("global_normalization") == "partial":
vis_gaus = self.data_val.unnormalize_global_static(
vis_gaus, slice(12, None)
)
elif self.hparams.get("global_normalization") == "all":
vis_gaus = self.dataval.unnormalize_global_static(vis_gaus, slice(None))
# vis_gaus = reflect_and_concat_gmms(vis_gaus)
pred_gaus = self.sampling_gaussians(vis_texts)
if not hasattr(self, "spaghetti"):
self.spaghetti = load_spaghetti(self.device, self.hparams.spaghetti_tag)
spaghetti = self.spaghetti
if not hasattr(self, "mesher"):
self.mesher = load_mesher(self.device)
mesher = self.mesher
""" get intrinsics """
# TODO change the ckpt path.
if not hasattr(self, "phase2_model"):
phase2_ckpt = "/home/juil/pvddir/results/phase2/augment_final_0214/0214_202607/checkpoints/epoch=4999-val_loss=0.0000.ckpt"
self.phase2_model = SpaghettiConditionSALDM.load_from_checkpoint(
phase2_ckpt, strict=False
).to(self.device)
self.phase2_model.eval()
for p in self.phase2_model.parameters():
p.requires_grad_(False)
phase2_model = self.phase2_model
gt_sj = phase2_model.sample(vis_gaus)
pred_sj = phase2_model.sample(pred_gaus)
gt_zcs = generate_zc_from_sj_gaus(spaghetti, gt_sj, vis_gaus)
pred_zcs = generate_zc_from_sj_gaus(spaghetti, pred_sj, pred_gaus)
wandb_logger = self.get_wandb_logger()
images = []
for i in range(vis_num_shapes):
gt_img = visutil.render_gaussians(vis_gaus[i], resolution=(256, 256))
try:
v, f = get_mesh_from_spaghetti(spaghetti, mesher, gt_zcs[i], res=128)
gt_mesh_img = visutil.render_mesh(v, f, resolution=(256, 256))
gt_img = imageutil.merge_images([gt_img, gt_mesh_img])
except:
pass
pred_img = visutil.render_gaussians(pred_gaus[i], resolution=(256, 256))
try:
v, f = get_mesh_from_spaghetti(spaghetti, mesher, pred_zcs[i], res=128)
pred_mesh_img = visutil.render_mesh(v, f, resolution=(256, 256))
pred_img = imageutil.merge_images([pred_img, pred_mesh_img])
except:
pass
img = imageutil.merge_images([gt_img, pred_img])
img = imageutil.draw_text(
img,
f"Left: GT | Right: Pred \n{vis_texts[i]}",
font_size=14,
max_seq_length=50,
)
images.append([img])
images = imageutil.merge_images(images)
wandb_logger.log_image("vis", [images])
|