Spaces:
Sleeping
Sleeping
import torch | |
class PolyDecayScheduler(torch.optim.lr_scheduler.LambdaLR): | |
def __init__(self, optimizer, init_lr, power=0.99, lr_end=1e-7, last_epoch=-1): | |
def lr_lambda(step): | |
lr = max(power**step, lr_end / init_lr) | |
return lr | |
super().__init__(optimizer, lr_lambda, last_epoch=last_epoch) | |
def get_dropout_mask(shape, dropout: float, device): | |
if dropout == 1: | |
return torch.zeros(shape, device=device, dtype=torch.bool) | |
elif dropout == 0: | |
return torch.ones_like(shape, device=device, dtype=torch.bool) | |
else: | |
return torch.zeros(shape, device=device).float().uniform_(0, 1) > dropout | |