Kaludi's picture
Update app.py
bbd2303
# Import the required Libraries
import gradio as gr
import numpy as np
import pandas as pd
import pickle
import transformers
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification,TFAutoModelForSequenceClassification
from scipy.special import softmax
# Requirements
model_path = "Kaludi/Reviews-Sentiment-Analysis"
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = "@user" if t.startswith("@") and len(t) > 1 else t
t = "http" if t.startswith("http") else t
new_text.append(t)
return " ".join(new_text)
# ---- Function to process the input and return prediction
def sentiment_analysis(text):
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
output = model(**encoded_input)
scores_ = output[0][0].detach().numpy()
scores_ = softmax(scores_)
# Format output dict of scores
labels = ["Negative", "Positive"]
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
return scores
# ---- Gradio app interface
app = gr.Interface(fn = sentiment_analysis,
inputs = gr.Textbox("Write your text or review here..."),
outputs = "label",
title = "Sentiment Analysis of Customer Reviews",
description = "A tool that analyzes the overall sentiment of customer reviews for a specific product or service, whether it's positive or negative. This analysis is performed by using natural language processing algorithms and machine learning from the model 'Reviews-Sentiment-Analysis' trained by Kaludi, allowing businesses to gain valuable insights into customer satisfaction and improve their products and services accordingly.",
article = "<p style='text-align: center'><a href='https://github.com/Kaludii'>Github</a> | <a href='https://huggingface.co/Kaludi'>HuggingFace</a></p>",
interpretation = "default",
examples = [["I was extremely disappointed with this product. The quality was terrible and it broke after only a few days of use. Customer service was unhelpful and unresponsive. I would not recommend this product to anyone."],[ "I am so impressed with this product! The quality is outstanding and it has exceeded all of my expectations. The customer service team was also incredibly helpful and responsive to any questions I had. I highly recommend this product to anyone in need of a top-notch, reliable solution."],["I don't feel like you trust me to do my job."],["This service was honestly one of the best I've experienced, I'll definitely come back!"]]
)
app.launch()