Spaces:
Runtime error
Runtime error
from typing import Any | |
import pytorch_lightning as pl | |
from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights | |
import torch | |
from torch import nn | |
from torchvision import transforms | |
import yaml | |
from yaml.loader import SafeLoader | |
import gradio as gr | |
import os | |
class WeedModel(pl.LightningModule): | |
def __init__(self, params): | |
super().__init__() | |
self.params = params | |
model = self.params["model"] | |
if model.lower() == "efficientnet": | |
if self.params["pretrained"]: | |
self.base_model = efficientnet_v2_s( | |
weights=EfficientNet_V2_S_Weights.IMAGENET1K_V1 | |
) | |
else: | |
self.base_model = efficientnet_v2_s(weights=None) | |
num_ftrs = self.base_model.classifier[-1].in_features | |
self.base_model.classifier[-1] = nn.Linear(num_ftrs, self.params["n_class"]) | |
else: | |
print("not prepared model yet!!") | |
def forward(self, x): | |
embedding = self.base_model(x) | |
return embedding | |
def predict_step( | |
self, batch: Any, batch_idx: int = 0, dataloader_idx: int = 0 | |
) -> Any: | |
y_hat = self(batch) | |
preds = torch.softmax(y_hat, dim=-1).tolist() | |
# preds = torch.argmax(preds, dim=-1) | |
return preds | |
def predict(image): | |
tensor_image = transform(image) | |
outs = model.predict_step(tensor_image.unsqueeze(0)) | |
labels = {class_names[k]: float(v) for k, v in enumerate(outs[0][:-1])} | |
return labels | |
title = " AISeed AI Application Demo " | |
description = "# A Demo of Deep Learning for Weed Classification" | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
with open("class_names.txt", "r", encoding="utf-8") as f: | |
class_names = f.read().splitlines() | |
with gr.Blocks() as demo: | |
demo.title = title | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.TabItem("Images"): | |
with gr.Row(): | |
with gr.Column(): | |
im = gr.Image(type="pil", label="input image", sources=["upload", "webcam"]) | |
with gr.Column(): | |
label_conv = gr.Label(label="Predictions", num_top_classes=4) | |
btn = gr.Button(value="predict") | |
btn.click(predict, inputs=im, outputs=[label_conv]) | |
gr.Examples(examples=example_list, inputs=[im], outputs=[label_conv]) | |
if __name__ == "__main__": | |
with open("config.yaml") as f: | |
PARAMS = yaml.load(f, Loader=SafeLoader) | |
print(PARAMS) | |
model = WeedModel.load_from_checkpoint( | |
"model/epoch=08.ckpt", params=PARAMS, map_location=torch.device("cpu") | |
) | |
model.eval() | |
transform = transforms.Compose( | |
[ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
] | |
) | |
demo.launch() | |