File size: 14,515 Bytes
96edc51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05a3e2c
 
 
96edc51
 
05a3e2c
96edc51
05a3e2c
96edc51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05a3e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96edc51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05a3e2c
96edc51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Import libraries
#Import packages
import pandas as pd
import numpy as np
import time
import datetime
from pycoingecko import CoinGeckoAPI
#from utils import slice
# Get API for CoinGecko
#cg = CoinGeckoAPI()
from dotenv import load_dotenv

from bs4 import BeautifulSoup
import requests
from pytrends.request import TrendReq
pytrends = TrendReq(hl='en-US')
from pytrends import dailydata
import yfinance as yf
import json
import prettytable
import os
from requests import Request, Session
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects
import json
load_dotenv()

COINMARKET_API_KEY=os.environ["COINMARKET_API_KEY"]
# Historical crypto data
def scrape_historical_series(coin_name,symbol,date_start,date_end):
    import datetime
    """ Scrape historical series on the sample of coins.

        Args:
            coin_names(list): List of coins we will use for training.
            date_start(list): List of values for Year_start,Month_start,Day_start.
            date_end(list): List of values for Year_end,Month_end,Day_end.
        Returns:
            Dataframe with the evolution of prices, market capitalizaiton, and total volume over time, for each respective currency.
        """

    df_ts_coins1=pd.DataFrame()

    #DATE definitions

    date_time = datetime.datetime(int(date_start[0]),int(date_start[1]),int(date_start[2]))
    date_time_now = datetime.datetime(int(date_end[0]),int(date_end[1]),int(date_end[2]))
    unix_past=time.mktime(date_time.timetuple()) #change the date format into unix for scraping
    unix_now=time.mktime(date_time_now.timetuple())
    past=datetime.datetime(int(date_start[0]),int(date_start[1]),int(date_start[2])).strftime('%Y-%m-%d')
    now=datetime.datetime(int(date_end[0]),int(date_end[1]),int(date_end[2])).strftime('%Y-%m-%d')
    datum_range=pd.date_range(start=past,end=now, freq='D')
    
    #empty lists
    unix_all=[]

    #create date variable
    for val in datum_range:
        unix_all=np.append(unix_all,time.mktime(val.timetuple()))
    url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/historical'
    parameters = {
    'time_start': (int(unix_past)),
    'time_end': (int(unix_now)),
    'symbol': symbol,
    'convert':'USD',
    'interval': 'daily',
    }
    headers = {
    'Accepts': 'application/json',
    'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
    }

    session = Session()
    session.headers.update(headers)

    try:
        response = session.get(url, params=parameters)
        data_json = json.loads(response.text)
        #data = json.loads(response.text['data']['quote']['USD'])

    except (ConnectionError, Timeout, TooManyRedirects) as e:
        print(e)

    #SCRAPE FOR ETH
#create date variable
    for val in datum_range:
        unix_all=np.append(unix_all,time.mktime(val.timetuple()))
    url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/historical'
    parameters = {
    'time_start': (int(unix_past)),
    'time_end': (int(unix_now)),
    'symbol': 'ETH',
    'convert':'USD',
    'interval': 'daily',
    }
    headers = {
    'Accepts': 'application/json',
    'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
    }

    session = Session()
    session.headers.update(headers)

    try:
        response = session.get(url, params=parameters)
        data_json_eth = json.loads(response.text)
        #data = json.loads(response.text['data']['quote']['USD'])

    except (ConnectionError, Timeout, TooManyRedirects) as e:
        print(e)

    date=[]
    price=[]
    price_eth=[]
    market_caps=[]
    total_volumes=[]

    for i in range(len(data_json['data'][symbol][0]['quotes'])):
        date=np.append(date,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['timestamp'])
        price=np.append(price,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['price'])
        market_caps=np.append(market_caps,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['market_cap'])
        total_volumes=np.append(total_volumes,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['volume_24h'])
        price_eth=np.append(price_eth,data_json_eth['data']['ETH'][0]['quotes'][i]['quote']['USD']['price'])
    ts_coins_cut=pd.DataFrame({'date':date, 'prices':price,'market_caps':market_caps,'total_vol':total_volumes,'price_eth':price_eth})
    ts_coins_cut['id']=np.repeat(coin_name,len(ts_coins_cut))
    ts_coins_cut['date']=pd.to_datetime(ts_coins_cut['date'])

    # SCRAPE CURRENT DATA
    unix_all=[]

    #create date variable
    for val in datum_range:
        unix_all=np.append(unix_all,time.mktime(val.timetuple()))
    url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/latest'
    parameters = {
    'symbol': symbol,
    'convert':'USD',
    }
    headers = {
    'Accepts': 'application/json',
    'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
    }

    session = Session()
    session.headers.update(headers)

    try:
        response = session.get(url, params=parameters)
        data_json = json.loads(response.text)
        #data = json.loads(response.text['data']['quote']['USD'])

    except (ConnectionError, Timeout, TooManyRedirects) as e:
        print(e)

    # Current data ETH
    #create date variable
    for val in datum_range:
        unix_all=np.append(unix_all,time.mktime(val.timetuple()))
    url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/latest'
    parameters = {
    'symbol': 'ETH',
    'convert':'USD',
    }
    headers = {
    'Accepts': 'application/json',
    'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
    }

    session = Session()
    session.headers.update(headers)

    try:
        response = session.get(url, params=parameters)
        data_json_eth = json.loads(response.text)
        #data = json.loads(response.text['data']['quote']['USD'])

    except (ConnectionError, Timeout, TooManyRedirects) as e:
        print(e)

    date=data_json['data'][str(symbol)][0]['quote']['USD']['last_updated']
    market_cap=data_json['data'][str(symbol)][0]['quote']['USD']['market_cap']
    total_volumes=data_json['data'][str(symbol)][0]['quote']['USD']['volume_24h']
    price=data_json['data'][str(symbol)][0]['quote']['USD']['price']
    price_eth=data_json_eth['data']['ETH'][0]['quote']['USD']['price']
    # CREATE CURRENT ROW
    from datetime import date
    today = date.today()
    df_today_row=pd.DataFrame({0:['id','date','prices','market_caps','total_vol','price_eth'],1:[coin_name[0],today.strftime('%Y-%m-%d %H:%M:%S'),price,market_cap,total_volumes,price_eth]}).T
    df_today_row.columns=df_today_row.iloc[0,:]
    df_today_row=df_today_row.drop(0)
    ts_coins_cut.to_csv('ts_coins_cut.csv')    
    return ts_coins_cut, df_today_row

# 2. Macro variables, CLI

def scrape_cli(past,today):
    """Scrape data on leading indicator for USA.
        Args:
            past(date): Date for which you want to start scraping.
            today(date): Date for which you want to end scraping.
        Returns:
            Dataframe with CLI and dates.
 """
    countries=['USA'] #,'OECDE','OECD','NMEC']
    past_date=past.strftime('%Y-%m')
    today_date=today.strftime('%Y-%m')
    clis=[]
    bclis=[]
    names=[]
    datas_country=pd.DataFrame()
    datas1=pd.DataFrame()
    types=['CLI'] #,'BCLI']
    for type in types:
        print(type)
        '''Scrape OECD data and create dataset in the form of time series where variables are CLI and BCLI for each country'''
        for country in countries:
            # Scrape data
            # if type=='BCLI':
            #     mainpage=requests.get(f'https://stats.oecd.org/restsdmx/sdmx.ashx/GetData/MEI_CLI/BSCICP03.{country}.M/all?startTime={past}&endTime={today}')
            if type=='CLI':
                mainpage=requests.get(f'https://stats.oecd.org/restsdmx/sdmx.ashx/GetData/MEI_CLI/CSCICP03.{country}.M/all?startTime={past_date}&endTime={today_date}')
            soup=BeautifulSoup(mainpage.content,'xml') #'html.parser')
            whatis=soup.find_all("ObsValue")
            whatis_key=soup.find_all("ObsKey")
            country=([(str(whatis_key[i]).split('"REF_AREA" value="')[1][:3]) for i in range(len(whatis))])
            dates=[pd.to_datetime(str(whatis_key[i]).split('"TIME_PERIOD" value="')[1][:7]) for i in range(len(whatis))]
            measure=[(str(whatis_key[i]).split('"MEASURE" value="')[1][:7][:-2]) for i in range(len(whatis))]
            values=[float(str(whatis[i]).split('value="')[1][0:-4]) for i in range(len(whatis))]
            df_cli=pd.DataFrame({'date':dates,'country':country,'measure':measure,type:values})
            df_cli.index=pd.to_datetime(df_cli['date'])
            df_cli=df_cli.loc[df_cli['country']=='USA']['CLI'].astype('float').resample('M').mean()
    return df_cli

def scrape_cpi_employment():
    """Scrape CPI and employment data."""

    headers = {'Content-type': 'application/json'}
    variables=['CUUR0000SA0','LNS12000000']
    data = json.dumps({"seriesid": variables,"startyear":"2024", "endyear":"2024"})
    p = requests.post('https://api.bls.gov/publicAPI/v2/timeseries/data/', data=data, headers=headers)
    json_data = json.loads(p.text)
    year_all=[]
    period_all=[]
    value_all=[]
    series_id=[]
    if len(json_data['Results'])>0:
        for series in json_data['Results']['series']:
            x=prettytable.PrettyTable(["series id","year","period","value","footnotes"])
            seriesId = series['seriesID']
            for item in series['data']:
                year = item['year']
                period = item['period']
                value = item['value']
                footnotes=""
                for footnote in item['footnotes']:
                    if footnote:
                        footnotes = footnotes + footnote['text'] + ','
                if 'M01' <= period <= 'M12':
                    x.add_row([seriesId,year,period,value,footnotes[0:-1]])
                year_all=np.append(year_all,year)
                period_all=np.append(period_all,period)
                value_all=np.append(value_all,value)
                if seriesId=='CUUR0000SA0':
                    series_id=np.append(series_id,'CPI')
                if seriesId=='LNS12000000':
                    series_id=np.append(series_id,'Employment')
                

        date=[(pd.to_datetime(f"{year_all[i]}'-'{int(period_all[i][-2:])}")) for i in range(len(year_all))]
        df_cpi=pd.DataFrame({'date':date,'value':value_all})
        df_cpi['series_id']=series_id
        df_cpi.set_index('date',inplace=True)
        df_cpi=pd.concat([df_cpi.loc[df_cpi['series_id']=='CPI'],df_cpi.loc[df_cpi['series_id']=='Employment']],axis=1)
        df_cpi=df_cpi.drop(columns='series_id')
        df_cpi.columns=['CPI','Employment']
    else:
        df_cpi=pd.DataFrame()
    return df_cpi

def scrape_google_trends(currency, currency_short):
    curr_neni=[]
    names_values=[currency]
    names_short=[currency_short]

    from datetime import date
    today = date.today()
    Day_end = today.strftime("%d")
    Month_end = today.strftime("%m")
    Year_end = today.strftime("%Y")
    Hour_end=21
    Minute_end=20

    past=today-datetime.timedelta(days=200)
    Day_start = past.strftime("%d")
    Month_start = past.strftime("%m")
    Year_start = past.strftime("%Y")

    date_start=[Year_start,Month_start,Day_start]
    date_end=[Year_end,Month_end,Day_end]
    date_all1=pd.date_range(past,today)
    #data_all1=np.repeat(0,len(date))
    keywords = []
    google_data=pd.DataFrame()
    for run_name in list(names_values):
        '''Scrape Google trends and create one time-series in the form of concated time series across all currencies'''
        #google_old_slice=slice(run_name,google_old_for_slice,google_old_for_slice['id'])
        run=list(names_values).index(run_name)
        time.sleep(5)
        try:
            data=dailydata.get_daily_data(str(run_name),int(Year_start), int(Month_start), int(Year_end), int(Month_end),verbose=False) #kw_list, 2021, 10, 2021, 11, geo = '',verbose=False,wait_time=5
            data1=data.iloc[:,4]
        except:
            try:
                time.sleep(5)
                new_index=list(names_values).index(run_name)
                data = dailydata.get_daily_data(word=names_short[new_index],start_year=Year_start, start_mon=Month_start, stop_year=Year_end, stop_mon=Month_end,verbose=False) #kw_list, 2021, 10, 2021, 11, geo = '',verbose=False,wait_time=5
                data1=data.iloc[:,4]
            except:
                pass
                curr_neni=np.append(curr_neni,run_name)
                #print(f'no currency {run_name} to scrape in google trends')
                data1=(np.repeat(0,len(date_all1)))
        data1=pd.DataFrame({'google_trend':pd.Series(data1)})
        data1.insert(0,'id',np.repeat(run_name,len(data1)))
        #google_tog=pd.concat([google_old_slice.set_index('date'),data1],axis=0)
        google_data=pd.concat([google_data,data1],axis=0)

    #change index from date to date_new to match old_dataset
    google_data.reset_index(inplace=True)

    if int(np.mean(data1['google_trend']))==0==0:
        google_data['date_new']=date_all1
        google_data.set_index('date_new',inplace=True)
    else:
        google_data.columns=np.append('date_new',google_data.columns[1:])
        google_data.set_index('date_new',inplace=True)
    return google_data

def scrape_stocks(past,today):
    # Set dates in the form needed for scraping
    date_old = past
    date_new = today
    #date_new = date.today().strftime("%Y-%m-%d")

    df=pd.DataFrame()
    #the codes for variables we are going to scrape
    codes=['^GSPC','GC=F','EURUSD%3DX','^TNX']
    codes_names=['GSPC','GC=F','EURUSD','TNX']

    for code in codes:
        '''Scrape Yahoo finance and create dataset with time series for all the financial variables'''
        code_index=codes.index(code)
        code_name=codes_names[code_index]
        df_code = yf.download(code,start=date_old, end=date_new,progress=False) #^IXIC print
        df_code=pd.DataFrame(df_code)
        df_code=df_code.reset_index()
        df_code_ts=df_code.iloc[:,1]
        df_code_ts=df_code_ts.rename(code_name)
        df = pd.concat([df,df_code_ts],axis=1)
    df_time=df_code.iloc[:,0]

    #set the index to date_new
    df.insert(0,'date',df_time)
    df_finance=df.dropna()
    df_finance.set_index('date',inplace=True)
    df_finance.index=pd.to_datetime(df_finance.index)

    #combine dataset with the old one
    return df_finance