File size: 14,515 Bytes
96edc51 05a3e2c 96edc51 05a3e2c 96edc51 05a3e2c 96edc51 05a3e2c 96edc51 05a3e2c 96edc51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Import libraries
#Import packages
import pandas as pd
import numpy as np
import time
import datetime
from pycoingecko import CoinGeckoAPI
#from utils import slice
# Get API for CoinGecko
#cg = CoinGeckoAPI()
from dotenv import load_dotenv
from bs4 import BeautifulSoup
import requests
from pytrends.request import TrendReq
pytrends = TrendReq(hl='en-US')
from pytrends import dailydata
import yfinance as yf
import json
import prettytable
import os
from requests import Request, Session
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects
import json
load_dotenv()
COINMARKET_API_KEY=os.environ["COINMARKET_API_KEY"]
# Historical crypto data
def scrape_historical_series(coin_name,symbol,date_start,date_end):
import datetime
""" Scrape historical series on the sample of coins.
Args:
coin_names(list): List of coins we will use for training.
date_start(list): List of values for Year_start,Month_start,Day_start.
date_end(list): List of values for Year_end,Month_end,Day_end.
Returns:
Dataframe with the evolution of prices, market capitalizaiton, and total volume over time, for each respective currency.
"""
df_ts_coins1=pd.DataFrame()
#DATE definitions
date_time = datetime.datetime(int(date_start[0]),int(date_start[1]),int(date_start[2]))
date_time_now = datetime.datetime(int(date_end[0]),int(date_end[1]),int(date_end[2]))
unix_past=time.mktime(date_time.timetuple()) #change the date format into unix for scraping
unix_now=time.mktime(date_time_now.timetuple())
past=datetime.datetime(int(date_start[0]),int(date_start[1]),int(date_start[2])).strftime('%Y-%m-%d')
now=datetime.datetime(int(date_end[0]),int(date_end[1]),int(date_end[2])).strftime('%Y-%m-%d')
datum_range=pd.date_range(start=past,end=now, freq='D')
#empty lists
unix_all=[]
#create date variable
for val in datum_range:
unix_all=np.append(unix_all,time.mktime(val.timetuple()))
url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/historical'
parameters = {
'time_start': (int(unix_past)),
'time_end': (int(unix_now)),
'symbol': symbol,
'convert':'USD',
'interval': 'daily',
}
headers = {
'Accepts': 'application/json',
'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
}
session = Session()
session.headers.update(headers)
try:
response = session.get(url, params=parameters)
data_json = json.loads(response.text)
#data = json.loads(response.text['data']['quote']['USD'])
except (ConnectionError, Timeout, TooManyRedirects) as e:
print(e)
#SCRAPE FOR ETH
#create date variable
for val in datum_range:
unix_all=np.append(unix_all,time.mktime(val.timetuple()))
url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/historical'
parameters = {
'time_start': (int(unix_past)),
'time_end': (int(unix_now)),
'symbol': 'ETH',
'convert':'USD',
'interval': 'daily',
}
headers = {
'Accepts': 'application/json',
'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
}
session = Session()
session.headers.update(headers)
try:
response = session.get(url, params=parameters)
data_json_eth = json.loads(response.text)
#data = json.loads(response.text['data']['quote']['USD'])
except (ConnectionError, Timeout, TooManyRedirects) as e:
print(e)
date=[]
price=[]
price_eth=[]
market_caps=[]
total_volumes=[]
for i in range(len(data_json['data'][symbol][0]['quotes'])):
date=np.append(date,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['timestamp'])
price=np.append(price,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['price'])
market_caps=np.append(market_caps,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['market_cap'])
total_volumes=np.append(total_volumes,data_json['data'][symbol][0]['quotes'][i]['quote']['USD']['volume_24h'])
price_eth=np.append(price_eth,data_json_eth['data']['ETH'][0]['quotes'][i]['quote']['USD']['price'])
ts_coins_cut=pd.DataFrame({'date':date, 'prices':price,'market_caps':market_caps,'total_vol':total_volumes,'price_eth':price_eth})
ts_coins_cut['id']=np.repeat(coin_name,len(ts_coins_cut))
ts_coins_cut['date']=pd.to_datetime(ts_coins_cut['date'])
# SCRAPE CURRENT DATA
unix_all=[]
#create date variable
for val in datum_range:
unix_all=np.append(unix_all,time.mktime(val.timetuple()))
url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/latest'
parameters = {
'symbol': symbol,
'convert':'USD',
}
headers = {
'Accepts': 'application/json',
'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
}
session = Session()
session.headers.update(headers)
try:
response = session.get(url, params=parameters)
data_json = json.loads(response.text)
#data = json.loads(response.text['data']['quote']['USD'])
except (ConnectionError, Timeout, TooManyRedirects) as e:
print(e)
# Current data ETH
#create date variable
for val in datum_range:
unix_all=np.append(unix_all,time.mktime(val.timetuple()))
url = ' https://pro-api.coinmarketcap.com/v2/cryptocurrency/quotes/latest'
parameters = {
'symbol': 'ETH',
'convert':'USD',
}
headers = {
'Accepts': 'application/json',
'X-CMC_PRO_API_KEY': COINMARKET_API_KEY,
}
session = Session()
session.headers.update(headers)
try:
response = session.get(url, params=parameters)
data_json_eth = json.loads(response.text)
#data = json.loads(response.text['data']['quote']['USD'])
except (ConnectionError, Timeout, TooManyRedirects) as e:
print(e)
date=data_json['data'][str(symbol)][0]['quote']['USD']['last_updated']
market_cap=data_json['data'][str(symbol)][0]['quote']['USD']['market_cap']
total_volumes=data_json['data'][str(symbol)][0]['quote']['USD']['volume_24h']
price=data_json['data'][str(symbol)][0]['quote']['USD']['price']
price_eth=data_json_eth['data']['ETH'][0]['quote']['USD']['price']
# CREATE CURRENT ROW
from datetime import date
today = date.today()
df_today_row=pd.DataFrame({0:['id','date','prices','market_caps','total_vol','price_eth'],1:[coin_name[0],today.strftime('%Y-%m-%d %H:%M:%S'),price,market_cap,total_volumes,price_eth]}).T
df_today_row.columns=df_today_row.iloc[0,:]
df_today_row=df_today_row.drop(0)
ts_coins_cut.to_csv('ts_coins_cut.csv')
return ts_coins_cut, df_today_row
# 2. Macro variables, CLI
def scrape_cli(past,today):
"""Scrape data on leading indicator for USA.
Args:
past(date): Date for which you want to start scraping.
today(date): Date for which you want to end scraping.
Returns:
Dataframe with CLI and dates.
"""
countries=['USA'] #,'OECDE','OECD','NMEC']
past_date=past.strftime('%Y-%m')
today_date=today.strftime('%Y-%m')
clis=[]
bclis=[]
names=[]
datas_country=pd.DataFrame()
datas1=pd.DataFrame()
types=['CLI'] #,'BCLI']
for type in types:
print(type)
'''Scrape OECD data and create dataset in the form of time series where variables are CLI and BCLI for each country'''
for country in countries:
# Scrape data
# if type=='BCLI':
# mainpage=requests.get(f'https://stats.oecd.org/restsdmx/sdmx.ashx/GetData/MEI_CLI/BSCICP03.{country}.M/all?startTime={past}&endTime={today}')
if type=='CLI':
mainpage=requests.get(f'https://stats.oecd.org/restsdmx/sdmx.ashx/GetData/MEI_CLI/CSCICP03.{country}.M/all?startTime={past_date}&endTime={today_date}')
soup=BeautifulSoup(mainpage.content,'xml') #'html.parser')
whatis=soup.find_all("ObsValue")
whatis_key=soup.find_all("ObsKey")
country=([(str(whatis_key[i]).split('"REF_AREA" value="')[1][:3]) for i in range(len(whatis))])
dates=[pd.to_datetime(str(whatis_key[i]).split('"TIME_PERIOD" value="')[1][:7]) for i in range(len(whatis))]
measure=[(str(whatis_key[i]).split('"MEASURE" value="')[1][:7][:-2]) for i in range(len(whatis))]
values=[float(str(whatis[i]).split('value="')[1][0:-4]) for i in range(len(whatis))]
df_cli=pd.DataFrame({'date':dates,'country':country,'measure':measure,type:values})
df_cli.index=pd.to_datetime(df_cli['date'])
df_cli=df_cli.loc[df_cli['country']=='USA']['CLI'].astype('float').resample('M').mean()
return df_cli
def scrape_cpi_employment():
"""Scrape CPI and employment data."""
headers = {'Content-type': 'application/json'}
variables=['CUUR0000SA0','LNS12000000']
data = json.dumps({"seriesid": variables,"startyear":"2024", "endyear":"2024"})
p = requests.post('https://api.bls.gov/publicAPI/v2/timeseries/data/', data=data, headers=headers)
json_data = json.loads(p.text)
year_all=[]
period_all=[]
value_all=[]
series_id=[]
if len(json_data['Results'])>0:
for series in json_data['Results']['series']:
x=prettytable.PrettyTable(["series id","year","period","value","footnotes"])
seriesId = series['seriesID']
for item in series['data']:
year = item['year']
period = item['period']
value = item['value']
footnotes=""
for footnote in item['footnotes']:
if footnote:
footnotes = footnotes + footnote['text'] + ','
if 'M01' <= period <= 'M12':
x.add_row([seriesId,year,period,value,footnotes[0:-1]])
year_all=np.append(year_all,year)
period_all=np.append(period_all,period)
value_all=np.append(value_all,value)
if seriesId=='CUUR0000SA0':
series_id=np.append(series_id,'CPI')
if seriesId=='LNS12000000':
series_id=np.append(series_id,'Employment')
date=[(pd.to_datetime(f"{year_all[i]}'-'{int(period_all[i][-2:])}")) for i in range(len(year_all))]
df_cpi=pd.DataFrame({'date':date,'value':value_all})
df_cpi['series_id']=series_id
df_cpi.set_index('date',inplace=True)
df_cpi=pd.concat([df_cpi.loc[df_cpi['series_id']=='CPI'],df_cpi.loc[df_cpi['series_id']=='Employment']],axis=1)
df_cpi=df_cpi.drop(columns='series_id')
df_cpi.columns=['CPI','Employment']
else:
df_cpi=pd.DataFrame()
return df_cpi
def scrape_google_trends(currency, currency_short):
curr_neni=[]
names_values=[currency]
names_short=[currency_short]
from datetime import date
today = date.today()
Day_end = today.strftime("%d")
Month_end = today.strftime("%m")
Year_end = today.strftime("%Y")
Hour_end=21
Minute_end=20
past=today-datetime.timedelta(days=200)
Day_start = past.strftime("%d")
Month_start = past.strftime("%m")
Year_start = past.strftime("%Y")
date_start=[Year_start,Month_start,Day_start]
date_end=[Year_end,Month_end,Day_end]
date_all1=pd.date_range(past,today)
#data_all1=np.repeat(0,len(date))
keywords = []
google_data=pd.DataFrame()
for run_name in list(names_values):
'''Scrape Google trends and create one time-series in the form of concated time series across all currencies'''
#google_old_slice=slice(run_name,google_old_for_slice,google_old_for_slice['id'])
run=list(names_values).index(run_name)
time.sleep(5)
try:
data=dailydata.get_daily_data(str(run_name),int(Year_start), int(Month_start), int(Year_end), int(Month_end),verbose=False) #kw_list, 2021, 10, 2021, 11, geo = '',verbose=False,wait_time=5
data1=data.iloc[:,4]
except:
try:
time.sleep(5)
new_index=list(names_values).index(run_name)
data = dailydata.get_daily_data(word=names_short[new_index],start_year=Year_start, start_mon=Month_start, stop_year=Year_end, stop_mon=Month_end,verbose=False) #kw_list, 2021, 10, 2021, 11, geo = '',verbose=False,wait_time=5
data1=data.iloc[:,4]
except:
pass
curr_neni=np.append(curr_neni,run_name)
#print(f'no currency {run_name} to scrape in google trends')
data1=(np.repeat(0,len(date_all1)))
data1=pd.DataFrame({'google_trend':pd.Series(data1)})
data1.insert(0,'id',np.repeat(run_name,len(data1)))
#google_tog=pd.concat([google_old_slice.set_index('date'),data1],axis=0)
google_data=pd.concat([google_data,data1],axis=0)
#change index from date to date_new to match old_dataset
google_data.reset_index(inplace=True)
if int(np.mean(data1['google_trend']))==0==0:
google_data['date_new']=date_all1
google_data.set_index('date_new',inplace=True)
else:
google_data.columns=np.append('date_new',google_data.columns[1:])
google_data.set_index('date_new',inplace=True)
return google_data
def scrape_stocks(past,today):
# Set dates in the form needed for scraping
date_old = past
date_new = today
#date_new = date.today().strftime("%Y-%m-%d")
df=pd.DataFrame()
#the codes for variables we are going to scrape
codes=['^GSPC','GC=F','EURUSD%3DX','^TNX']
codes_names=['GSPC','GC=F','EURUSD','TNX']
for code in codes:
'''Scrape Yahoo finance and create dataset with time series for all the financial variables'''
code_index=codes.index(code)
code_name=codes_names[code_index]
df_code = yf.download(code,start=date_old, end=date_new,progress=False) #^IXIC print
df_code=pd.DataFrame(df_code)
df_code=df_code.reset_index()
df_code_ts=df_code.iloc[:,1]
df_code_ts=df_code_ts.rename(code_name)
df = pd.concat([df,df_code_ts],axis=1)
df_time=df_code.iloc[:,0]
#set the index to date_new
df.insert(0,'date',df_time)
df_finance=df.dropna()
df_finance.set_index('date',inplace=True)
df_finance.index=pd.to_datetime(df_finance.index)
#combine dataset with the old one
return df_finance
|