kawadou commited on
Commit
938384c
·
1 Parent(s): 708a55f

Add application file

Browse files
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import fitz # PyMuPDF
3
+ from sentence_transformers import SentenceTransformer, util
4
+ import faiss
5
+ from transformers import pipeline
6
+
7
+ st.title("Évaluation Stagiaire Data Scientist")
8
+
9
+ uploaded_file = st.file_uploader("Choisissez un fichier PDF", type="pdf")
10
+
11
+ def extract_text_from_pdf(pdf_path):
12
+ text = ""
13
+ pdf_document = fitz.open(pdf_path)
14
+ for page_num in range(pdf_document.page_count):
15
+ page = pdf_document.load_page(page_num)
16
+ text += page.get_text()
17
+ return text
18
+
19
+ def index_document(text):
20
+ model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
21
+ documents = [text]
22
+ document_embeddings = model.encode(documents, convert_to_tensor=True)
23
+ index = faiss.IndexFlatL2(document_embeddings.shape[1])
24
+ index.add(document_embeddings.cpu().detach().numpy())
25
+ faiss.write_index(index, 'document_index.faiss')
26
+
27
+ def get_answer_from_document(question, context):
28
+ qa_pipeline = pipeline('question-answering', model='deepset/roberta-base-squad2')
29
+ result = qa_pipeline(question=question, context=context)
30
+ return result
31
+
32
+ def generate_questions(text, num_questions=5):
33
+ question_generation_pipeline = pipeline("text2text-generation", model="valhalla/t5-base-qg-hl")
34
+ input_text = "generate questions: " + text
35
+ questions = question_generation_pipeline(input_text, max_length=512, num_return_sequences=num_questions)
36
+ return [q['generated_text'] for q in questions]
37
+
38
+ def evaluate_responses(user_responses, correct_answers):
39
+ model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
40
+ user_embeddings = model.encode(user_responses, convert_to_tensor=True)
41
+ correct_embeddings = model.encode(correct_answers, convert_to_tensor=True)
42
+ scores = []
43
+ for user_emb, correct_emb in zip(user_embeddings, correct_embeddings):
44
+ score = util.pytorch_cos_sim(user_emb, correct_emb)
45
+ scores.append(score.item())
46
+ return scores
47
+
48
+ def generate_training_plan(scores, threshold=0.7):
49
+ plan = []
50
+ for idx, score in enumerate(scores):
51
+ if score < threshold:
52
+ plan.append(f"Revoir la section correspondant à la question {idx+1}")
53
+ else:
54
+ plan.append(f"Passer à l'étape suivante après la question {idx+1}")
55
+ return plan
56
+
57
+ if uploaded_file is not None:
58
+ with open("uploaded_document.pdf", "wb") as f:
59
+ f.write(uploaded_file.getbuffer())
60
+ document_text = extract_text_from_pdf("uploaded_document.pdf")
61
+
62
+ st.write("Texte extrait du document PDF:")
63
+ st.write(document_text[:1000]) # Affiche les 1000 premiers caractères du texte extrait
64
+
65
+ index_document(document_text)
66
+
67
+ st.subheader("Questions générées")
68
+ questions = generate_questions(document_text, num_questions=5)
69
+ for idx, question in enumerate(questions):
70
+ st.write(f"Question {idx+1}: {question}")
71
+
72
+ st.subheader("Évaluer les réponses de l'utilisateur")
73
+ user_responses = [st.text_input(f"Réponse de l'utilisateur {idx+1}") for idx in range(5)]
74
+ if st.button("Évaluer"):
75
+ correct_answers = ["La réponse correcte 1", "La réponse correcte 2", "La réponse correcte 3", "La réponse correcte 4", "La réponse correcte 5"]
76
+ scores = evaluate_responses(user_responses, correct_answers)
77
+ for idx, score in enumerate(scores):
78
+ st.write(f"Question {idx+1}: Score {score:.2f}")
79
+
80
+ st.subheader("Plan de formation personnalisé")
81
+ training_plan = generate_training_plan(scores)
82
+ for step in training_plan:
83
+ st.write(step)