kawadou
commited on
Commit
·
938384c
1
Parent(s):
708a55f
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import fitz # PyMuPDF
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import faiss
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
st.title("Évaluation Stagiaire Data Scientist")
|
8 |
+
|
9 |
+
uploaded_file = st.file_uploader("Choisissez un fichier PDF", type="pdf")
|
10 |
+
|
11 |
+
def extract_text_from_pdf(pdf_path):
|
12 |
+
text = ""
|
13 |
+
pdf_document = fitz.open(pdf_path)
|
14 |
+
for page_num in range(pdf_document.page_count):
|
15 |
+
page = pdf_document.load_page(page_num)
|
16 |
+
text += page.get_text()
|
17 |
+
return text
|
18 |
+
|
19 |
+
def index_document(text):
|
20 |
+
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
21 |
+
documents = [text]
|
22 |
+
document_embeddings = model.encode(documents, convert_to_tensor=True)
|
23 |
+
index = faiss.IndexFlatL2(document_embeddings.shape[1])
|
24 |
+
index.add(document_embeddings.cpu().detach().numpy())
|
25 |
+
faiss.write_index(index, 'document_index.faiss')
|
26 |
+
|
27 |
+
def get_answer_from_document(question, context):
|
28 |
+
qa_pipeline = pipeline('question-answering', model='deepset/roberta-base-squad2')
|
29 |
+
result = qa_pipeline(question=question, context=context)
|
30 |
+
return result
|
31 |
+
|
32 |
+
def generate_questions(text, num_questions=5):
|
33 |
+
question_generation_pipeline = pipeline("text2text-generation", model="valhalla/t5-base-qg-hl")
|
34 |
+
input_text = "generate questions: " + text
|
35 |
+
questions = question_generation_pipeline(input_text, max_length=512, num_return_sequences=num_questions)
|
36 |
+
return [q['generated_text'] for q in questions]
|
37 |
+
|
38 |
+
def evaluate_responses(user_responses, correct_answers):
|
39 |
+
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
40 |
+
user_embeddings = model.encode(user_responses, convert_to_tensor=True)
|
41 |
+
correct_embeddings = model.encode(correct_answers, convert_to_tensor=True)
|
42 |
+
scores = []
|
43 |
+
for user_emb, correct_emb in zip(user_embeddings, correct_embeddings):
|
44 |
+
score = util.pytorch_cos_sim(user_emb, correct_emb)
|
45 |
+
scores.append(score.item())
|
46 |
+
return scores
|
47 |
+
|
48 |
+
def generate_training_plan(scores, threshold=0.7):
|
49 |
+
plan = []
|
50 |
+
for idx, score in enumerate(scores):
|
51 |
+
if score < threshold:
|
52 |
+
plan.append(f"Revoir la section correspondant à la question {idx+1}")
|
53 |
+
else:
|
54 |
+
plan.append(f"Passer à l'étape suivante après la question {idx+1}")
|
55 |
+
return plan
|
56 |
+
|
57 |
+
if uploaded_file is not None:
|
58 |
+
with open("uploaded_document.pdf", "wb") as f:
|
59 |
+
f.write(uploaded_file.getbuffer())
|
60 |
+
document_text = extract_text_from_pdf("uploaded_document.pdf")
|
61 |
+
|
62 |
+
st.write("Texte extrait du document PDF:")
|
63 |
+
st.write(document_text[:1000]) # Affiche les 1000 premiers caractères du texte extrait
|
64 |
+
|
65 |
+
index_document(document_text)
|
66 |
+
|
67 |
+
st.subheader("Questions générées")
|
68 |
+
questions = generate_questions(document_text, num_questions=5)
|
69 |
+
for idx, question in enumerate(questions):
|
70 |
+
st.write(f"Question {idx+1}: {question}")
|
71 |
+
|
72 |
+
st.subheader("Évaluer les réponses de l'utilisateur")
|
73 |
+
user_responses = [st.text_input(f"Réponse de l'utilisateur {idx+1}") for idx in range(5)]
|
74 |
+
if st.button("Évaluer"):
|
75 |
+
correct_answers = ["La réponse correcte 1", "La réponse correcte 2", "La réponse correcte 3", "La réponse correcte 4", "La réponse correcte 5"]
|
76 |
+
scores = evaluate_responses(user_responses, correct_answers)
|
77 |
+
for idx, score in enumerate(scores):
|
78 |
+
st.write(f"Question {idx+1}: Score {score:.2f}")
|
79 |
+
|
80 |
+
st.subheader("Plan de formation personnalisé")
|
81 |
+
training_plan = generate_training_plan(scores)
|
82 |
+
for step in training_plan:
|
83 |
+
st.write(step)
|