Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,36 @@
|
|
1 |
-
from transformers import AutoModel, AutoTokenizer
|
2 |
-
import streamlit as st
|
3 |
-
from PIL import Image
|
4 |
-
import tempfile
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
def perform_ocr(image):
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
10 |
-
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
11 |
-
model = model.eval()
|
12 |
-
res = model.chat(tokenizer, image, ocr_type='ocr')
|
13 |
-
return res
|
14 |
-
|
15 |
-
|
16 |
-
# Title and instructions
|
17 |
-
st.title(' OCR and Document Search Web Application Prototype')
|
18 |
-
st.write('Upload an image and extract text in Hindi and English. You can also search for keywords within the extracted text.')
|
19 |
-
|
20 |
-
# Upload the image
|
21 |
-
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "png", "jpeg"])
|
22 |
-
|
23 |
-
# If an image is uploaded
|
24 |
-
if uploaded_file is not None:
|
25 |
-
image = Image.open(uploaded_file)
|
26 |
-
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
27 |
-
|
28 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
29 |
-
temp_file.write(uploaded_file.getbuffer())
|
30 |
-
temp_file_path = temp_file.name
|
31 |
-
|
32 |
-
# Perform OCR on the uploaded image
|
33 |
-
st.write("Extracting text...")
|
34 |
-
extracted_text = perform_ocr(temp_file_path)
|
35 |
-
st.write("Extracted Text:")
|
36 |
st.text_area("OCR Output", extracted_text, height=200)
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
+
import streamlit as st
|
3 |
+
from PIL import Image
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
def perform_ocr(image):
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
10 |
+
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
11 |
+
model = model.eval()
|
12 |
+
res = model.chat(tokenizer, image, ocr_type='ocr')
|
13 |
+
return res
|
14 |
+
|
15 |
+
|
16 |
+
# Title and instructions
|
17 |
+
st.title(' OCR and Document Search Web Application Prototype')
|
18 |
+
st.write('Upload an image and extract text in Hindi and English. You can also search for keywords within the extracted text.')
|
19 |
+
|
20 |
+
# Upload the image
|
21 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "png", "jpeg"])
|
22 |
+
|
23 |
+
# If an image is uploaded
|
24 |
+
if uploaded_file is not None:
|
25 |
+
image = Image.open(uploaded_file)
|
26 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
27 |
+
|
28 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
29 |
+
temp_file.write(uploaded_file.getbuffer())
|
30 |
+
temp_file_path = temp_file.name
|
31 |
+
|
32 |
+
# Perform OCR on the uploaded image
|
33 |
+
st.write("Extracting text...")
|
34 |
+
extracted_text = perform_ocr(temp_file_path)
|
35 |
+
st.write("Extracted Text:")
|
36 |
st.text_area("OCR Output", extracted_text, height=200)
|