Spaces:
Runtime error
Runtime error
KingAsiedu
commited on
Commit
·
20a8f66
1
Parent(s):
c95f635
Upload 2 files
Browse files- app.py +90 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit.components.v1 as com
|
3 |
+
#import libraries
|
4 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoConfig
|
5 |
+
import numpy as np
|
6 |
+
#convert logits to probabilities
|
7 |
+
from scipy.special import softmax
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
#import the model
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
14 |
+
|
15 |
+
model_path = f"Junr-syl/tweet_sentiments_analysis"
|
16 |
+
config = AutoConfig.from_pretrained(model_path)
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
18 |
+
#Set the page configs
|
19 |
+
st.set_page_config(page_title='Sentiments Analysis',page_icon='😎',layout='wide')
|
20 |
+
|
21 |
+
#welcome Animation
|
22 |
+
com.iframe("https://embed.lottiefiles.com/animation/149093")
|
23 |
+
st.markdown('<h1> Tweet Sentiments </h1>',unsafe_allow_html=True)
|
24 |
+
|
25 |
+
#Create a form to take user inputs
|
26 |
+
with st.form(key='tweet',clear_on_submit=True):
|
27 |
+
text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine')
|
28 |
+
submit=st.form_submit_button('submit')
|
29 |
+
|
30 |
+
#create columns to show outputs
|
31 |
+
col1,col2,col3=st.columns(3)
|
32 |
+
col1.title('Sentiment Emoji')
|
33 |
+
col2.title('How this user feels about the vaccine')
|
34 |
+
col3.title('Confidence of this prediction')
|
35 |
+
|
36 |
+
if submit:
|
37 |
+
print('submitted')
|
38 |
+
#pass text to preprocessor
|
39 |
+
def preprocess(text):
|
40 |
+
#initiate an empty list
|
41 |
+
new_text = []
|
42 |
+
#split text by space
|
43 |
+
for t in text.split(" "):
|
44 |
+
#set username to @user
|
45 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
46 |
+
#set tweet source to http
|
47 |
+
t = 'http' if t.startswith('http') else t
|
48 |
+
#store text in the list
|
49 |
+
new_text.append(t)
|
50 |
+
#change text from list back to string
|
51 |
+
return " ".join(new_text)
|
52 |
+
|
53 |
+
|
54 |
+
#pass text to model
|
55 |
+
|
56 |
+
#change label id
|
57 |
+
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
58 |
+
|
59 |
+
text = preprocess(text)
|
60 |
+
|
61 |
+
# PyTorch-based models
|
62 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
63 |
+
output = model(**encoded_input)
|
64 |
+
scores = output[0][0].detach().numpy()
|
65 |
+
scores = softmax(scores)
|
66 |
+
|
67 |
+
#Process scores
|
68 |
+
ranking = np.argsort(scores)
|
69 |
+
ranking = ranking[::-1]
|
70 |
+
l = config.id2label[ranking[0]]
|
71 |
+
s = scores[ranking[0]]
|
72 |
+
|
73 |
+
#output
|
74 |
+
if l=='NEGATIVE':
|
75 |
+
with col1:
|
76 |
+
com.iframe("https://embed.lottiefiles.com/animation/125694")
|
77 |
+
col2.write('Negative')
|
78 |
+
col3.write(f'{s}%')
|
79 |
+
elif l=='POSITIVE':
|
80 |
+
with col1:
|
81 |
+
com.iframe("https://embed.lottiefiles.com/animation/148485")
|
82 |
+
col2.write('Positive')
|
83 |
+
col3.write(f'{s}%')
|
84 |
+
else:
|
85 |
+
with col1:
|
86 |
+
com.iframe("https://embed.lottiefiles.com/animation/136052")
|
87 |
+
col2.write('Neutral')
|
88 |
+
col3.write(f'{s}%')
|
89 |
+
|
90 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
transformers[torch]
|
4 |
+
Scipy
|