File size: 8,656 Bytes
b064a39
 
a2c34b1
e8d658f
96e03ae
 
 
 
5a74763
96e03ae
 
 
 
 
 
 
 
 
b064a39
e8d658f
ea9b1ca
96e03ae
 
ea9b1ca
a2c34b1
e8d658f
96e03ae
 
e8d658f
96e03ae
b064a39
e61aa35
a2c34b1
 
e8d658f
e61aa35
 
 
 
 
b2730cf
e8d658f
 
 
a5a6781
e8d658f
a2c34b1
b064a39
e61aa35
b064a39
91a1fc2
 
 
e61aa35
 
 
 
 
 
 
 
 
 
96e03ae
63b28b4
 
e8d658f
63b28b4
96e03ae
 
 
 
 
 
 
 
 
91a1fc2
96e03ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b28b4
96e03ae
63b28b4
b064a39
96e03ae
 
 
 
63b28b4
96e03ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2730cf
e8d658f
 
 
 
 
 
 
 
b2730cf
e8d658f
e61aa35
e8d658f
 
b2730cf
e8d658f
 
 
b2730cf
e8d658f
 
b2730cf
e8d658f
3a023fb
 
727a804
 
 
a5a6781
727a804
9926870
 
 
 
03346c0
3a023fb
9926870
e8d658f
a2c34b1
e61aa35
 
 
 
 
 
 
 
 
 
 
 
63b28b4
e61aa35
 
 
 
 
a2c34b1
e61aa35
 
e8d658f
a2c34b1
 
e8d658f
 
 
03346c0
e8d658f
 
a2c34b1
63b28b4
91a1fc2
63b28b4
 
 
e8d658f
96e03ae
 
e8d658f
 
a2c34b1
63b28b4
96e03ae
 
63b28b4
 
b064a39
96e03ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import pandas as pd
from pathlib import Path
import logging
from datetime import datetime
import sys
import uuid
from typing import Dict, Any
import numpy as np

# Add parent directory to path to import main
sys.path.append(str(Path(__file__).parent))
from main import (
    StorageManager, 
    EvaluationRequest,
    evaluate_model,
    PATHS
)

logging.basicConfig(level=logging.INFO)

# Initialize storage manager
storage_manager = StorageManager(PATHS)

def load_leaderboard_data():
    try:
        return pd.DataFrame(storage_manager.load('leaderboard'))
    except Exception as e:
        logging.error(f"Error loading leaderboard: {e}")
        return pd.DataFrame()

def format_leaderboard_df(df, sort_by="pwed"):
    if df.empty:
        return df
    
    # Sort the original dataframe first
    sort_column = "average_per" if sort_by.lower() == "per" else "average_pwed"
    df = df.sort_values(by=sort_column, ascending=True)  # Ascending=True means smaller values at top
    
    # Then create display dataframe from the sorted data
    display_df = pd.DataFrame({
        "Model": df["model"],
        "Average PER ⬇️": df["average_per"].apply(lambda x: f"{x:.4f}"),
        "Average PWED ⬇️": df["average_pwed"].apply(lambda x: f"{x:.4f}"),
        "Link": df["github_url"].apply(lambda x: f'<a href="{x}" target="_blank">Repository</a>' if x else "N/A"),
        "Submission Date": pd.to_datetime(df["submission_date"]).dt.strftime("%Y-%m-%d")
    })
    
    return display_df

def create_html_table(df):
    return df.to_html(escape=False, index=False, classes="styled-table")

def update_leaderboard(sort_option: str) -> str:
    try:
        df = load_leaderboard_data()
        formatted_df = format_leaderboard_df(df, sort_option.lower())
        return create_html_table(formatted_df)
    except Exception as e:
        logging.error(f"Error updating leaderboard: {e}")
        return "Error updating leaderboard"


def submit_evaluation(model_name: str, submission_name: str, github_url: str) -> str:
    if not model_name or not submission_name:
        return "⚠️ Please provide both model name and submission name."
    
    try:
        # Generate a task ID
        task_id = str(uuid.uuid4())
        
        # Create evaluation request
        request = EvaluationRequest(
            transcription_model=model_name,
            submission_name=submission_name,
            github_url=github_url if github_url else None,
            subset="test"
        )
        
        # Create task entry
        task = {
            "id": task_id,
            "model": model_name,
            "subset": "test",
            "submission_name": submission_name,
            "github_url": github_url,
            "status": "queued",
            "submitted_at": datetime.now().isoformat()
        }
        
        # Save task
        tasks = storage_manager.load('tasks')
        tasks.append(task)
        storage_manager.save('tasks', tasks)
        
        # Start evaluation in background
        import asyncio
        asyncio.run(evaluate_model(task_id, request))
        
        return f"βœ… Evaluation submitted successfully! Task ID: {task_id}"
    except Exception as e:
        return f"❌ Error: {str(e)}"

def check_status(query: str) -> Dict[str, Any]:
    if not query:
        return {"error": "Please enter a model name or task ID"}
    
    try:
        results = storage_manager.load('results')
        tasks = storage_manager.load('tasks')
        
        # First try to find by task ID
        result = next((r for r in results if r["task_id"] == query), None)
        task = next((t for t in tasks if t["id"] == query), None)
        
        # If not found, try to find by model name
        if not result:
            result = next((r for r in results if r["model"] == query), None)
        if not task:
            task = next((t for t in tasks if t["model"] == query), None)
        
        if result:
            # If we found results, return them
            return {
                "status": "completed",
                "model": result["model"],
                "subset": result["subset"],
                "num_files": result["num_files"],
                "average_per": result["average_per"],
                "average_pwed": result["average_pwed"],
                "detailed_results": result["detailed_results"],
                "timestamp": result["timestamp"]
            }
        elif task:
            # If we only found task status, return that
            return task
        else:
            return {"error": f"No results found for '{query}'"}
            
    except Exception as e:
        logging.error(f"Error checking status: {e}")
        return {"error": f"Error checking status: {str(e)}"}

with gr.Blocks(css="""
    .styled-table {
        width: 100%;
        border-collapse: collapse;
        margin: 25px 0;
        font-size: 0.9em;
        font-family: sans-serif;
        box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
    }
    .styled-table thead tr {
        background: linear-gradient(45deg, #092746, #073562, #0A648F);
        color: #ffffff;
        text-align: left;
    }
    .styled-table th,
    .styled-table td {
        padding: 12px 15px;
    }
    .styled-table tbody tr {
        border-bottom: 1px solid #dddddd;
    }
""") as demo:
    gr.Markdown("# 🎯 Phonemic Transcription Leaderboard")
    gr.Markdown("#### Developed By: Koel Labs")
    gr.Markdown("""
    ## Explanation of Metrics
    - **PER (Phoneme Error Rate)**: The Levenshtein distance calculated between phoneme sequences of the predicted and actual transcriptions. 
    - **PWED (Phoneme Weighted Edit Distance)**: Edit distance between the predicted and actual phoneme sequences, weighted by the phonemic feature distance. Method provided by [panphon library](https://github.com/dmort27/panphon)
    """)
    gr.Markdown("""
    ## Test Set Information
    The test set used for evaluation is from the [TIMIT speech corpus](https://www.kaggle.com/datasets/mfekadu/darpa-timit-acousticphonetic-continuous-speech). The TIMIT corpus is a widely used dataset for speech recognition research.
    
    ## Compute
    This leaderboard uses the free basic plan (16GB RAM, 2vCPUs) to allow for reproducability. The evaluation may take several hours to complete. Please be patient and do not submit the same model multiple times.
    """)
    with gr.Tabs():
        with gr.TabItem("πŸ† Leaderboard"):
            with gr.Row(elem_classes="controls-row"):
                # Controls side by side
                sort_dropdown = gr.Dropdown(
                    choices=["PWED", "PER"],
                    value="PWED",
                    interactive=True,
                    scale=2,
                    container=False,  # Removes the box around the dropdown
                    label=None  # Removes the "Sort by" label
                )
                refresh_btn = gr.Button("Refresh πŸ”„", scale=2)  # Simplified button text
            
            leaderboard_html = gr.HTML(create_html_table(format_leaderboard_df(load_leaderboard_data())))
            sort_dropdown.change(
                fn=update_leaderboard,
                inputs=[sort_dropdown],
                outputs=leaderboard_html
            )
            refresh_btn.click(
                fn=update_leaderboard,
                inputs=[sort_dropdown],
                outputs=leaderboard_html
            )
        
        with gr.TabItem("πŸ“ Submit Model"):
            model_name = gr.Textbox(label="Model Name", placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft")
            submission_name = gr.Textbox(label="Submission Name", placeholder="My Model v1.0")
            github_url = gr.Textbox(label="Github/Kaggle/HF URL (optional)", placeholder="https://github.com/username/repo")
            submit_btn = gr.Button("Submit")
            result = gr.Textbox(label="Submission Status")
            
            submit_btn.click(
                fn=submit_evaluation,
                inputs=[model_name, submission_name, github_url],
                outputs=result
            )
        
        with gr.TabItem("πŸ“Š Model Status"):
            query = gr.Textbox(label="Model Name or Task ID", placeholder="Enter model name (e.g., facebook/wav2vec2-lv-60-espeak-cv-ft)")
            status_btn = gr.Button("Check Status")
            status_output = gr.JSON(label="Status")
            
            status_btn.click(
                fn=check_status,
                inputs=query,
                outputs=status_output
            )

if __name__ == "__main__":
    demo.launch()