Spaces:
Running
Running
File size: 17,489 Bytes
96e03ae 8314532 3a023fb 8314532 96e03ae 3a023fb 2e03a0a 96e03ae 03346c0 96e03ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import gradio as gr
from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel, HttpUrl
from typing import List, Optional, Dict
import torch
import torchaudio
from transformers import AutoProcessor, AutoModelForCTC
import evaluate
import zipfile
from datetime import datetime
import json
import uuid
import os
from pathlib import Path
from huggingface_hub import HfApi
import evaluate
from phone_metrics import PhoneErrorMetrics
# Set up download configuration with your token
app = FastAPI(title="TIMIT Phoneme Transcription Leaderboard")
# Create Gradio interface
demo = gr.Interface(
fn=lambda x: x,
inputs=gr.Textbox(visible=False),
outputs=gr.Textbox(visible=False),
title="TIMIT Phoneme Transcription Queue",
description="API endpoints are available at /api/leaderboard, /api/evaluate, and /api/tasks/{task_id}"
)
# Get absolute path - Updated for HF Spaces
CURRENT_DIR = Path(__file__).parent.absolute()
# Constants - Updated for HF Spaces environment
TIMIT_PATH = CURRENT_DIR / ".data" / "TIMIT.zip" # Move TIMIT.zip to root of space
QUEUE_DIR = CURRENT_DIR / "queue"
PATHS = {
'tasks': QUEUE_DIR / "tasks.json",
'results': QUEUE_DIR / "results.json",
'leaderboard': QUEUE_DIR / "leaderboard.json"
}
# Initialize evaluation metric
phone_errors = PhoneErrorMetrics()
class TimitDataManager:
"""Handles all TIMIT dataset operations"""
# TIMIT to IPA mapping with direct simplifications
TIMIT_TO_IPA = {
# Vowels (simplified)
'aa': 'ɑ',
'ae': 'æ',
'ah': 'ʌ',
'ao': 'ɔ',
'aw': 'aʊ',
'ay': 'aɪ',
'eh': 'ɛ',
'er': 'ɹ', # Simplified from 'ɝ'
'ey': 'eɪ',
'ih': 'ɪ',
'ix': 'i', # Simplified from 'ɨ'
'iy': 'i',
'ow': 'oʊ',
'oy': 'ɔɪ',
'uh': 'ʊ',
'uw': 'u',
'ux': 'u', # Simplified from 'ʉ'
'ax': 'ə',
'ax-h': 'ə', # Simplified from 'ə̥'
'axr': 'ɹ', # Simplified from 'ɚ'
# Consonants
'b': '',
'bcl': 'b',
'd': '',
'dcl': 'd',
'g': '',
'gcl': 'g',
'p': '',
'pcl': 'p',
't': '',
'tcl': 't',
'k': '',
'kcl': 'k',
'dx': 'ɾ',
'q': 'ʔ',
# Fricatives
'jh': 'dʒ',
'ch': 'tʃ',
's': 's',
'sh': 'ʃ',
'z': 'z',
'zh': 'ʒ',
'f': 'f',
'th': 'θ',
'v': 'v',
'dh': 'ð',
'hh': 'h',
'hv': 'h', # Simplified from 'ɦ'
# Nasals (simplified)
'm': 'm',
'n': 'n',
'ng': 'ŋ',
'em': 'm', # Simplified from 'm̩'
'en': 'n', # Simplified from 'n̩'
'eng': 'ŋ', # Simplified from 'ŋ̍'
'nx': 'ɾ', # Simplified from 'ɾ̃'
# Semivowels and Glides
'l': 'l',
'r': 'ɹ',
'w': 'w',
'wh': 'ʍ',
'y': 'j',
'el': 'l', # Simplified from 'l̩'
# Special
'epi': '', # Remove epenthetic silence
'h#': '', # Remove start/end silence
'pau': '', # Remove pause
}
def __init__(self, timit_path: Path):
self.timit_path = timit_path
self._zip = None
print(f"TimitDataManager initialized with path: {self.timit_path.absolute()}")
if not self.timit_path.exists():
raise FileNotFoundError(f"TIMIT dataset not found at {self.timit_path.absolute()}")
print("TIMIT dataset file exists!")
@property
def zip(self):
if not self._zip:
try:
self._zip = zipfile.ZipFile(self.timit_path, 'r')
print("Successfully opened TIMIT zip file")
except FileNotFoundError:
raise FileNotFoundError(f"TIMIT dataset not found at {self.timit_path}")
return self._zip
def get_file_list(self, subset: str) -> List[str]:
"""Get list of WAV files for given subset"""
files = [f for f in self.zip.namelist()
if f.endswith('.WAV') and subset.lower() in f.lower()]
print(f"Found {len(files)} WAV files in {subset} subset")
if files:
print("First 3 files:", files[:3])
return files
def load_audio(self, filename: str) -> torch.Tensor:
"""Load and preprocess audio file"""
with self.zip.open(filename) as wav_file:
waveform, sample_rate = torchaudio.load(wav_file)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if sample_rate != 16000:
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
waveform = (waveform - waveform.mean()) / (waveform.std() + 1e-7)
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
return waveform
def get_phonemes(self, filename: str) -> str:
"""Get cleaned phoneme sequence from PHN file and convert to IPA"""
phn_file = filename.replace('.WAV', '.PHN')
with self.zip.open(phn_file) as f:
phonemes = []
for line in f.read().decode('utf-8').splitlines():
if line.strip():
_, _, phone = line.split()
phone = self.remove_stress_mark(phone)
# Convert to IPA instead of using simplify_timit
ipa = self.TIMIT_TO_IPA.get(phone.lower(), '')
if ipa:
phonemes.append(ipa)
return ''.join(phonemes) # Join without spaces for IPA
def simplify_timit(self, phoneme: str) -> str:
"""Apply substitutions to simplify TIMIT phonemes"""
return self.PHONE_SUBSTITUTIONS.get(phoneme, phoneme)
def remove_stress_mark(self, text: str) -> str:
"""Removes the combining double inverted breve (͡) from text"""
if not isinstance(text, str):
raise TypeError("Input must be string")
return text.replace('͡', '')
class ModelManager:
"""Handles model loading and inference"""
def __init__(self):
self.models = {}
self.processors = {}
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.batch_size = 32 # Added batch size parameter
def get_model_and_processor(self, model_name: str):
"""Get or load model and processor"""
if model_name not in self.models:
print("Loading processor with phoneme tokenizer...")
processor = AutoProcessor.from_pretrained(model_name)
print("Loading model...", {model_name})
model = AutoModelForCTC.from_pretrained(model_name).to(self.device)
self.models[model_name] = model
self.processors[model_name] = processor
return self.models[model_name], self.processors[model_name]
def transcribe(self, audio_list: List[torch.Tensor], model_name: str) -> List[str]:
"""Transcribe a batch of audio using specified model"""
model, processor = self.get_model_and_processor(model_name)
if not model or not processor:
raise Exception("Model and processor not loaded")
# Process audio in batches
all_predictions = []
for i in range(0, len(audio_list), self.batch_size):
batch_audio = audio_list[i:i + self.batch_size]
# Pad sequence within batch
max_length = max(audio.shape[-1] for audio in batch_audio)
padded_audio = torch.zeros((len(batch_audio), 1, max_length))
attention_mask = torch.zeros((len(batch_audio), max_length))
for j, audio in enumerate(batch_audio):
padded_audio[j, :, :audio.shape[-1]] = audio
attention_mask[j, :audio.shape[-1]] = 1
# Process batch
inputs = processor(
padded_audio.squeeze(1).numpy(),
sampling_rate=16000,
return_tensors="pt",
padding=True
)
input_values = inputs.input_values.to(self.device)
attention_mask = inputs.get("attention_mask", attention_mask).to(self.device)
with torch.no_grad():
outputs = model(
input_values=input_values,
attention_mask=attention_mask
)
logits = outputs.logits
predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids, skip_special_tokens=True)
predictions = [pred.replace(' ', '') for pred in predictions]
all_predictions.extend(predictions)
return all_predictions
class StorageManager:
"""Handles all JSON storage operations"""
def __init__(self, paths: Dict[str, Path]):
self.paths = paths
self._ensure_directories()
def _ensure_directories(self):
"""Ensure all necessary directories and files exist"""
for path in self.paths.values():
path.parent.mkdir(parents=True, exist_ok=True)
if not path.exists():
path.write_text('[]')
def load(self, key: str) -> List:
"""Load JSON file"""
return json.loads(self.paths[key].read_text())
def save(self, key: str, data: List):
"""Save data to JSON file"""
self.paths[key].write_text(json.dumps(data, indent=4, default=str, ensure_ascii=False))
def update_task(self, task_id: str, updates: Dict):
"""Update specific task with new data"""
tasks = self.load('tasks')
for task in tasks:
if task['id'] == task_id:
task.update(updates)
break
self.save('tasks', tasks)
class EvaluationRequest(BaseModel):
"""Request model for TIMIT evaluation"""
transcription_model: str
subset: str = "test"
max_samples: Optional[int] = None
submission_name: str
github_url: Optional[str] = None
# Initialize managers
timit_manager = TimitDataManager(TIMIT_PATH)
model_manager = ModelManager()
storage_manager = StorageManager(PATHS)
async def evaluate_model(task_id: str, request: EvaluationRequest):
"""Background task to evaluate model on TIMIT"""
try:
storage_manager.update_task(task_id, {"status": "processing"})
files = timit_manager.get_file_list(request.subset)
if request.max_samples:
files = files[:request.max_samples]
results = []
total_per = total_pwed = 0
# Process files in batches
batch_size = model_manager.batch_size
for i in range(0, len(files), batch_size):
batch_files = files[i:i + batch_size]
# Load batch audio and ground truth
batch_audio = []
batch_ground_truth = []
for wav_file in batch_files:
audio = timit_manager.load_audio(wav_file)
ground_truth = timit_manager.get_phonemes(wav_file)
batch_audio.append(audio)
batch_ground_truth.append(ground_truth)
# Get predictions for batch
predictions = model_manager.transcribe(batch_audio, request.transcription_model)
# Calculate metrics for each file in batch
for j, (wav_file, prediction, ground_truth) in enumerate(zip(batch_files, predictions, batch_ground_truth)):
# Convert Unicode to readable format
#prediction_str = repr(prediction)[1:-1] # Remove quotes but keep escaped unicode
metrics = phone_errors.compute(
predictions=[prediction],
references=[ground_truth],
is_normalize_pfer=True
)
per = metrics['phone_error_rates'][0]
pwed = metrics['phone_feature_error_rates'][0]
results.append({
"file": wav_file,
"ground_truth": ground_truth,
"prediction": prediction,
"per": per,
"pwed": pwed
})
total_per += per
total_pwed += pwed
if not results:
raise Exception("No files were successfully processed")
avg_per = total_per / len(results)
avg_pwed = total_pwed / len(results)
result = {
"task_id": task_id,
"model": request.transcription_model,
"subset": request.subset,
"num_files": len(results),
"average_per": avg_per,
"average_pwed": avg_pwed,
"detailed_results": results[:5],
"timestamp": datetime.now().isoformat()
}
# Save results
print("Saving results...")
current_results = storage_manager.load('results')
current_results.append(result)
storage_manager.save('results', current_results)
# Update leaderboard
print("Updating leaderboard...")
leaderboard = storage_manager.load('leaderboard')
entry = next((e for e in leaderboard
if e["submission_name"] == request.submission_name), None)
if entry:
# Simply update with new scores
entry.update({
"average_per": avg_per,
"average_pwed": avg_pwed,
"model": request.transcription_model,
"subset": request.subset,
"github_url": request.github_url,
"submission_date": datetime.now().isoformat()
})
else:
leaderboard.append({
"submission_id": str(uuid.uuid4()),
"submission_name": request.submission_name,
"model": request.transcription_model,
"average_per": avg_per,
"average_pwed": avg_pwed,
"subset": request.subset,
"github_url": request.github_url,
"submission_date": datetime.now().isoformat()
})
storage_manager.save('leaderboard', leaderboard)
storage_manager.update_task(task_id, {"status": "completed"})
print("Evaluation completed successfully")
except Exception as e:
error_msg = f"Evaluation failed: {str(e)}"
print(error_msg)
storage_manager.update_task(task_id, {
"status": "failed",
"error": error_msg
})
# Initialize managers
def init_directories():
"""Ensure all necessary directories exist"""
(CURRENT_DIR / ".data").mkdir(parents=True, exist_ok=True)
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
for path in PATHS.values():
if not path.exists():
path.write_text('[]')
# Initialize your managers
init_directories() # Your existing initialization function
timit_manager = TimitDataManager(TIMIT_PATH)
model_manager = ModelManager()
storage_manager = StorageManager(PATHS)
@app.get("/api/health")
async def health_check():
"""Simple health check endpoint"""
return {"status": "healthy"}
@app.post("/api/evaluate")
async def submit_evaluation(
request: EvaluationRequest,
background_tasks: BackgroundTasks
):
"""Submit new evaluation task"""
task_id = str(uuid.uuid4())
task = {
"id": task_id,
"model": request.transcription_model,
"subset": request.subset,
"submission_name": request.submission_name,
"github_url": request.github_url,
"status": "queued",
"submitted_at": datetime.now().isoformat()
}
tasks = storage_manager.load('tasks')
tasks.append(task)
storage_manager.save('tasks', tasks)
background_tasks.add_task(evaluate_model, task_id, request)
return {
"message": "Evaluation task submitted successfully",
"task_id": task_id
}
@app.get("/api/tasks/{task_id}")
async def get_task(task_id: str):
"""Get specific task status"""
tasks = storage_manager.load('tasks')
task = next((t for t in tasks if t["id"] == task_id), None)
if not task:
raise HTTPException(status_code=404, detail="Task not found")
return task
@app.get("/api/leaderboard")
async def get_leaderboard():
"""Get current leaderboard"""
try:
leaderboard = storage_manager.load('leaderboard')
sorted_leaderboard = sorted(leaderboard, key=lambda x: (x["average_pwed"], x["average_per"]))
return sorted_leaderboard
except Exception as e:
print(f"Error loading leaderboard: {e}")
return []
# Note: We need to mount the FastAPI app after defining all routes
app = gr.mount_gradio_app(app, demo, path="/")
# For local development
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|