KojoKesse commited on
Commit
a72e351
·
1 Parent(s): 8dad921

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md CHANGED
@@ -11,3 +11,80 @@ license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+
16
+ ---
17
+
18
+ # Sentiment Analysis with Transformers and Gradio
19
+
20
+ This script performs sentiment analysis using pre-trained transformer models from the `transformers` library and sets up a user interface using `Gradio` for interaction.
21
+
22
+ ## Installation
23
+
24
+ ### Requirements
25
+ - Python 3.x
26
+ - Required libraries: `transformers`, `datasets`, `gradio`
27
+
28
+ Install necessary libraries by running:
29
+
30
+ ```bash
31
+ pip install -q transformers datasets gradio
32
+ ```
33
+
34
+ ## Usage
35
+
36
+ 1. Clone or download the script.
37
+ 2. Ensure Python and required libraries are installed.
38
+ 3. Run the script in a Python environment.
39
+
40
+ The script demonstrates sentiment analysis using a pre-trained model (`avichr/heBERT_sentiment_analysis`) to classify the sentiment of input text into `Negative`, `Neutral`, or `Positive` categories.
41
+
42
+ ### Steps:
43
+ 1. Preprocesses the input text by handling placeholders for usernames and links.
44
+ 2. Utilizes a pre-trained model (`bert-base-cased`) and the specified sentiment analysis model (`avichr/heBERT_sentiment_analysis`).
45
+ 3. Performs sentiment analysis on the provided text, showcasing the confidence scores for each sentiment category.
46
+
47
+ ## Additional Information
48
+
49
+ - The script demonstrates two methods for sentiment analysis using both PyTorch-based and TensorFlow-based transformer models.
50
+ - The Gradio interface allows users to input text and get a sentiment label prediction based on the pre-trained model.
51
+
52
+ Please ensure proper environment setup and access to the specified model (`avichr/heBERT_sentiment_analysis`) before running the script
53
+
54
+ ---
55
+
56
+ # Sentiment Analysis with Transformers and Gradio
57
+
58
+ This script performs sentiment analysis using pre-trained transformer models from the `transformers` library and sets up a user interface using `Gradio` for interaction.
59
+
60
+ ## Installation
61
+
62
+ ### Requirements
63
+ - Python 3.x
64
+ - Required libraries: `transformers`, `datasets`, `gradio`
65
+
66
+ Install necessary libraries by running:
67
+
68
+ ```bash
69
+ pip install -q transformers datasets gradio
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ 1. Clone or download the script.
75
+ 2. Ensure Python and required libraries are installed.
76
+ 3. Run the script in a Python environment.
77
+
78
+ The script demonstrates sentiment analysis using a pre-trained model (`avichr/heBERT_sentiment_analysis`) to classify the sentiment of input text into `Negative`, `Neutral`, or `Positive` categories.
79
+
80
+ ### Steps:
81
+ 1. Preprocesses the input text by handling placeholders for usernames and links.
82
+ 2. Utilizes a pre-trained model (`bert-base-cased`) and the specified sentiment analysis model (`avichr/heBERT_sentiment_analysis`).
83
+ 3. Performs sentiment analysis on the provided text, showcasing the confidence scores for each sentiment category.
84
+
85
+ ## Additional Information
86
+
87
+ - The script demonstrates two methods for sentiment analysis using both PyTorch-based and TensorFlow-based transformer models.
88
+ - The Gradio interface allows users to input text and get a sentiment label prediction based on the pre-trained model.
89
+
90
+ Please ensure proper environment setup and access to the specified model (`avichr/heBERT_sentiment_analysis`) before running