KojoKesse commited on
Commit
b381aaf
·
1 Parent(s): 7d73adc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -60
app.py CHANGED
@@ -1,65 +1,10 @@
1
- import subprocess
2
- subprocess.run(["pip", "install", "-q", "transformers", "datasets", "gradio", "scipy"])
3
-
4
- from transformers import AutoModelForSequenceClassification
5
- from transformers import TFAutoModelForSequenceClassification
6
- from transformers import AutoTokenizer, AutoConfig
7
- import numpy as np
8
- from scipy.special import softmax
9
-
10
-
11
- tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
12
-
13
- model_path = f"avichr/heBERT_sentiment_analysis"
14
- config = AutoConfig.from_pretrained(model_path)
15
- model = AutoModelForSequenceClassification.from_pretrained(model_path)
16
-
17
- # Preprocess text (username and link placeholders)
18
- def preprocess(text):
19
- new_text = []
20
- for t in text.split(" "):
21
- t = '@user' if t.startswith('@') and len(t) > 1 else t
22
- t = 'http' if t.startswith('http') else t
23
- new_text.append(t)
24
- return " ".join(new_text)
25
-
26
- # Input preprocessing
27
- text = "Covid cases are increasing fast!"
28
- text = preprocess(text)
29
-
30
- # PyTorch-based models
31
- encoded_input = tokenizer(text, return_tensors='pt')
32
- output = model(**encoded_input)
33
- scores = output[0][0].detach().numpy()
34
- scores = softmax(scores)
35
-
36
- # TensorFlow-based models
37
- # model = TFAutoModelForSequenceClassification.from_pretrained(model_path)
38
- # model.save_pretrained(model_path)
39
- # text = "Covid cases are increasing fast!"
40
- # encoded_input = tokenizer(text, return_tensors='tf')
41
- # output = model(encoded_input)
42
- # scores = output[0][0].numpy()
43
- # scores = softmax(scores)
44
-
45
- config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
46
-
47
- # Print labels and scores
48
- ranking = np.argsort(scores)
49
- ranking = ranking[::-1]
50
- print(f"Classified text: {text}")
51
- for i in range(scores.shape[0]):
52
- l = config.id2label[ranking[i]]
53
- s = scores[ranking[i]]
54
- print(f"{i+1}) {l} {np.round(float(s), 4)}")
55
-
56
  from transformers import AutoModelForSequenceClassification
57
  from transformers import TFAutoModelForSequenceClassification
58
  from transformers import AutoTokenizer, AutoConfig
59
  from scipy.special import softmax
60
  import gradio as gr
61
-
62
-
63
 
64
  # Requirements
65
  model_path = f"avichr/heBERT_sentiment_analysis"
@@ -95,8 +40,9 @@ def sentiment_analysis(text):
95
  demo = gr.Interface(
96
  fn=sentiment_analysis,
97
  inputs=gr.Textbox(placeholder="Write how you feel about Covid here..."),
98
- outputs="label",
99
- examples=[["This is something!"]])
 
 
100
 
101
  demo.launch()
102
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from transformers import AutoModelForSequenceClassification
2
  from transformers import TFAutoModelForSequenceClassification
3
  from transformers import AutoTokenizer, AutoConfig
4
  from scipy.special import softmax
5
  import gradio as gr
6
+ import numpy as np
7
+ from scipy.special import softmax
8
 
9
  # Requirements
10
  model_path = f"avichr/heBERT_sentiment_analysis"
 
40
  demo = gr.Interface(
41
  fn=sentiment_analysis,
42
  inputs=gr.Textbox(placeholder="Write how you feel about Covid here..."),
43
+ outputs="text",
44
+ examples=[["What's up with the Vaccine"]]
45
+ title = "Tutorial: Sentiment Analysis App"
46
+ description = "This App assess if a sentiment about Covid is positive or negative")
47
 
48
  demo.launch()