Spaces:
Running
Running
import os | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from datetime import datetime | |
import gradio as gr | |
from typing import Dict, List, Union, Optional | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ContentAnalyzer: | |
def __init__(self): | |
self.hf_token = os.getenv("HF_TOKEN") | |
if not self.hf_token: | |
raise ValueError("HF_TOKEN environment variable is not set!") | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model = None | |
self.tokenizer = None | |
self.trigger_categories = self._init_trigger_categories() | |
def _init_trigger_categories(self) -> Dict: | |
"""Initialize trigger categories with their descriptions.""" | |
return { | |
"Violence": { | |
"mapped_name": "Violence", | |
"description": ( | |
"Any act involving physical force or aggression intended to cause harm, injury, or death to a person, animal, or object. " | |
"Includes direct physical confrontations, implied violence, or large-scale events like wars, riots, or violent protests." | |
) | |
}, | |
"Death": { | |
"mapped_name": "Death References", | |
"description": ( | |
"Any mention, implication, or depiction of the loss of life, including direct deaths of characters, mentions of deceased individuals, " | |
"or abstract references to mortality. This covers depictions of funerals, mourning, or death-centered dialogue." | |
) | |
}, | |
"Substance Use": { | |
"mapped_name": "Substance Use", | |
"description": ( | |
"Any explicit or implied reference to the consumption, misuse, or abuse of drugs, alcohol, or other intoxicating substances. " | |
"Includes scenes of drinking, smoking, drug use, withdrawal symptoms, or rehabilitation." | |
) | |
}, | |
"Gore": { | |
"mapped_name": "Gore", | |
"description": ( | |
"Extremely detailed and graphic depictions of severe physical injuries, mutilation, or extreme bodily harm, including heavy blood, " | |
"exposed organs, or dismemberment." | |
) | |
}, | |
"Vomit": { | |
"mapped_name": "Vomit", | |
"description": "Any reference to the act of vomiting, whether directly described, implied, or depicted in detail." | |
}, | |
"Sexual Content": { | |
"mapped_name": "Sexual Content", | |
"description": ( | |
"Any depiction or mention of sexual activity, intimacy, or sexual behavior, from implied scenes to explicit descriptions." | |
) | |
}, | |
"Sexual Abuse": { | |
"mapped_name": "Sexual Abuse", | |
"description": ( | |
"Any form of non-consensual sexual act, behavior, or interaction, involving coercion, manipulation, or physical force." | |
) | |
}, | |
"Self-Harm": { | |
"mapped_name": "Self-Harm", | |
"description": ( | |
"Any mention or depiction of behaviors where an individual intentionally causes harm to themselves, including suicidal thoughts." | |
) | |
}, | |
"Gun Use": { | |
"mapped_name": "Gun Use", | |
"description": ( | |
"Any explicit or implied mention of firearms being handled, fired, or used in a threatening manner." | |
) | |
}, | |
"Animal Cruelty": { | |
"mapped_name": "Animal Cruelty", | |
"description": ( | |
"Any act of harm, abuse, or neglect toward animals, whether intentional or accidental." | |
) | |
}, | |
"Mental Health Issues": { | |
"mapped_name": "Mental Health Issues", | |
"description": ( | |
"Any reference to mental health struggles, disorders, or psychological distress, including therapy and treatment." | |
) | |
} | |
} | |
async def load_model(self, progress=None) -> None: | |
"""Load the model and tokenizer with progress updates.""" | |
try: | |
if progress: | |
progress(0.1, "Loading tokenizer...") | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
"meta-llama/Llama-3.2-1B", | |
use_fast=True | |
) | |
if progress: | |
progress(0.3, "Loading model...") | |
self.model = AutoModelForCausalLM.from_pretrained( | |
"meta-llama/Llama-3.2-1B", | |
token=self.hf_token, | |
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32, | |
device_map="auto" | |
) | |
if progress: | |
progress(0.5, "Model loaded successfully") | |
logger.info(f"Model loaded successfully on {self.device}") | |
except Exception as e: | |
logger.error(f"Error loading model: {str(e)}") | |
raise | |
def _chunk_text(self, text: str, chunk_size: int = 256, overlap: int = 15) -> List[str]: | |
"""Split text into overlapping chunks for processing.""" | |
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size - overlap)] | |
async def analyze_chunk( | |
self, | |
chunk: str, | |
progress: Optional[gr.Progress] = None, | |
current_progress: float = 0, | |
progress_step: float = 0 | |
) -> Dict[str, float]: | |
"""Analyze a single chunk of text for triggers.""" | |
chunk_triggers = {} | |
for category, info in self.trigger_categories.items(): | |
mapped_name = info["mapped_name"] | |
description = info["description"] | |
prompt = f""" | |
Check this text for any indication of {mapped_name} ({description}). | |
Be sensitive to subtle references or implications, make sure the text is not metaphorical. | |
Respond concisely with: YES, NO, or MAYBE. | |
Text: {chunk} | |
Answer: | |
""" | |
try: | |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) | |
inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = self.model.generate( | |
**inputs, | |
max_new_tokens=3, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.8, | |
pad_token_id=self.tokenizer.eos_token_id | |
) | |
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip().upper() | |
first_word = response_text.split("\n")[-1].split()[0] if response_text else "NO" | |
if first_word == "YES": | |
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 1 | |
elif first_word == "MAYBE": | |
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 0.5 | |
if progress: | |
current_progress += progress_step | |
progress(min(current_progress, 0.9), f"Analyzing {mapped_name}...") | |
except Exception as e: | |
logger.error(f"Error analyzing chunk for {mapped_name}: {str(e)}") | |
return chunk_triggers | |
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]: | |
"""Analyze the entire script for triggers with progress updates.""" | |
if not self.model or not self.tokenizer: | |
await self.load_model(progress) | |
chunks = self._chunk_text(script) | |
identified_triggers = {} | |
progress_step = 0.4 / (len(chunks) * len(self.trigger_categories)) | |
current_progress = 0.5 # Starting after model loading | |
for chunk_idx, chunk in enumerate(chunks, 1): | |
chunk_triggers = await self.analyze_chunk( | |
chunk, | |
progress, | |
current_progress, | |
progress_step | |
) | |
for trigger, count in chunk_triggers.items(): | |
identified_triggers[trigger] = identified_triggers.get(trigger, 0) + count | |
if progress: | |
progress(0.95, "Finalizing results...") | |
final_triggers = [ | |
trigger for trigger, count in identified_triggers.items() | |
if count > 0.5 | |
] | |
return final_triggers if final_triggers else ["None"] | |
async def analyze_content( | |
script: str, | |
progress: Optional[gr.Progress] = None | |
) -> Dict[str, Union[List[str], str]]: | |
"""Main analysis function for the Gradio interface.""" | |
analyzer = ContentAnalyzer() | |
try: | |
triggers = await analyzer.analyze_script(script, progress) | |
if progress: | |
progress(1.0, "Analysis complete!") | |
result = { | |
"detected_triggers": triggers, | |
"confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected", | |
"model": "Llama-3.2-1B", | |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
return result | |
except Exception as e: | |
logger.error(f"Analysis error: {str(e)}") | |
return { | |
"detected_triggers": ["Error occurred during analysis"], | |
"confidence": "Error", | |
"model": "Llama-3.2-1B", | |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"error": str(e) | |
} | |
if __name__ == "__main__": | |
# This section is mainly for testing the analyzer directly | |
iface = gr.Interface( | |
fn=analyze_content, | |
inputs=gr.Textbox(lines=8, label="Input Text"), | |
outputs=gr.JSON(), | |
title="Content Analysis", | |
description="Analyze text content for sensitive topics" | |
) | |
iface.launch() |