Spaces:
Running
Running
Kuberwastaken
commited on
Commit
·
6149106
1
Parent(s):
e15502b
Better model
Browse files- .gitignore +1 -0
- model/__pycache__/analyzer.cpython-310.pyc +0 -0
- model/analyzer.py +211 -149
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
treat-env
|
model/__pycache__/analyzer.cpython-310.pyc
ADDED
Binary file (8.83 kB). View file
|
|
model/analyzer.py
CHANGED
@@ -1,188 +1,250 @@
|
|
1 |
-
import
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
from datetime import datetime
|
5 |
-
import
|
6 |
-
import json
|
7 |
-
import os
|
8 |
-
from huggingface_hub import login
|
9 |
-
|
10 |
-
class ContentAnalyzer:
|
11 |
-
def __init__(self):
|
12 |
-
self.model_name = "meta-llama/Llama-3.2-1B"
|
13 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
self.tokenizer = None
|
15 |
-
self.model = None
|
16 |
-
# Authenticate with Hugging Face
|
17 |
-
if "HF_TOKEN" in os.environ:
|
18 |
-
print("Authenticating with Hugging Face...")
|
19 |
-
login(token=os.environ["HF_TOKEN"])
|
20 |
-
else:
|
21 |
-
print("Warning: HF_TOKEN not found in environment variables")
|
22 |
-
|
23 |
-
def load_model(self):
|
24 |
-
try:
|
25 |
-
print("Loading tokenizer...")
|
26 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
27 |
-
self.model_name,
|
28 |
-
use_fast=True,
|
29 |
-
token=os.environ.get("HF_TOKEN")
|
30 |
-
)
|
31 |
-
|
32 |
-
print(f"Loading model on {self.device}...")
|
33 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
34 |
-
self.model_name,
|
35 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
36 |
-
low_cpu_mem_usage=True,
|
37 |
-
device_map="auto",
|
38 |
-
token=os.environ.get("HF_TOKEN")
|
39 |
-
)
|
40 |
-
return True
|
41 |
-
except Exception as e:
|
42 |
-
print(f"Model loading error: {str(e)}")
|
43 |
-
return False
|
44 |
-
|
45 |
-
def cleanup(self):
|
46 |
-
if self.device == "cuda":
|
47 |
-
torch.cuda.empty_cache()
|
48 |
-
gc.collect()
|
49 |
-
|
50 |
-
def analyze_chunk(self, chunk, category_info):
|
51 |
-
mapped_name = category_info["mapped_name"]
|
52 |
-
description = category_info["description"]
|
53 |
-
|
54 |
-
print(f"\nAnalyzing for {mapped_name}...")
|
55 |
-
prompt = f"""Check this text for any indication of {mapped_name} ({description}).
|
56 |
-
Be sensitive to subtle references or implications, make sure the text is not metaphorical.
|
57 |
-
Respond concisely with: YES, NO, or MAYBE.
|
58 |
-
Text: {chunk}
|
59 |
-
Answer:"""
|
60 |
-
|
61 |
-
try:
|
62 |
-
print(f"Sending prompt to model...")
|
63 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
64 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
65 |
-
|
66 |
-
with torch.no_grad():
|
67 |
-
print("Generating response...")
|
68 |
-
outputs = self.model.generate(
|
69 |
-
**inputs,
|
70 |
-
max_new_tokens=10,
|
71 |
-
do_sample=True,
|
72 |
-
temperature=0.5,
|
73 |
-
top_p=0.9,
|
74 |
-
pad_token_id=self.tokenizer.eos_token_id
|
75 |
-
)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
print(f"Detected {mapped_name} in this chunk!")
|
83 |
-
elif first_word == "MAYBE":
|
84 |
-
print(f"Possible {mapped_name} detected, marking for review.")
|
85 |
-
else:
|
86 |
-
print(f"No {mapped_name} detected in this chunk.")
|
87 |
-
|
88 |
-
score = 1 if first_word == "YES" else 0.5 if first_word == "MAYBE" else 0
|
89 |
-
return score, first_word
|
90 |
-
|
91 |
-
except Exception as e:
|
92 |
-
print(f"Chunk analysis error: {str(e)}")
|
93 |
-
return 0, "NO"
|
94 |
-
|
95 |
-
def analyze_text(self, text):
|
96 |
-
print("\n=== Starting Analysis ===")
|
97 |
-
print(f"Time: {datetime.now()}")
|
98 |
-
|
99 |
-
if not self.load_model():
|
100 |
-
return {
|
101 |
-
"detected_triggers": {"0": "Error"},
|
102 |
-
"confidence": "Low - Model loading failed",
|
103 |
-
"model": self.model_name,
|
104 |
-
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
105 |
-
}
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
#
|
112 |
trigger_categories = {
|
113 |
"Violence": {
|
114 |
"mapped_name": "Violence",
|
115 |
-
"description":
|
|
|
|
|
|
|
|
|
116 |
},
|
117 |
"Death": {
|
118 |
"mapped_name": "Death References",
|
119 |
-
"description":
|
|
|
|
|
|
|
|
|
120 |
},
|
121 |
-
"
|
122 |
"mapped_name": "Substance Use",
|
123 |
-
"description":
|
|
|
|
|
|
|
|
|
124 |
},
|
125 |
"Gore": {
|
126 |
"mapped_name": "Gore",
|
127 |
-
"description":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
},
|
129 |
-
"
|
130 |
"mapped_name": "Sexual Content",
|
131 |
-
"description":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
},
|
133 |
-
"
|
134 |
"mapped_name": "Self-Harm",
|
135 |
-
"description":
|
|
|
|
|
|
|
136 |
},
|
137 |
-
"
|
138 |
"mapped_name": "Gun Use",
|
139 |
-
"description":
|
|
|
|
|
|
|
140 |
},
|
141 |
-
"
|
142 |
"mapped_name": "Animal Cruelty",
|
143 |
-
"description":
|
|
|
|
|
|
|
144 |
},
|
145 |
-
"
|
146 |
"mapped_name": "Mental Health Issues",
|
147 |
-
"description":
|
|
|
|
|
|
|
|
|
148 |
}
|
149 |
}
|
150 |
|
|
|
|
|
|
|
|
|
|
|
151 |
identified_triggers = {}
|
152 |
|
153 |
for chunk_idx, chunk in enumerate(script_chunks, 1):
|
154 |
print(f"\n--- Processing Chunk {chunk_idx}/{len(script_chunks)} ---")
|
155 |
for category, info in trigger_categories.items():
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
print("\n=== Analysis Complete ===")
|
166 |
if not final_triggers:
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
result = analyzer.analyze_text(text)
|
188 |
-
return json.dumps(result, indent=2)
|
|
|
1 |
+
import os
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
from datetime import datetime
|
5 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Fetch the Hugging Face token from the environment variable (secrets)
|
8 |
+
hf_token = os.getenv("HF_TOKEN")
|
9 |
+
|
10 |
+
if not hf_token:
|
11 |
+
raise ValueError("HF_TOKEN environment variable is not set!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def analyze_script(script):
|
14 |
+
# Starting the script analysis
|
15 |
+
print("\n=== Starting Analysis ===")
|
16 |
+
print(f"Time: {datetime.now()}") # Outputting the current timestamp
|
17 |
+
print("Loading model and tokenizer...")
|
18 |
+
|
19 |
+
try:
|
20 |
+
# Load the tokenizer and model, selecting the appropriate device (CPU or CUDA)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B", use_fast=True)
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # Use CUDA if available, else use CPU
|
23 |
+
print(f"Using device: {device}")
|
24 |
+
|
25 |
+
# Set your Hugging Face token for Llama model access
|
26 |
+
hf_token = "your_huggingface_token_here"
|
27 |
+
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
"meta-llama/Llama-3.2-1B",
|
30 |
+
use_auth_token=hf_token, # Pass the token to authenticate
|
31 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32, # Use 16-bit precision for CUDA, 32-bit for CPU
|
32 |
+
device_map="auto" # Automatically map model to available device
|
33 |
+
)
|
34 |
+
print("Model loaded successfully")
|
35 |
+
except Exception as e:
|
36 |
+
print(f"An error occurred: {e}")
|
37 |
|
38 |
+
# Define trigger categories with their descriptions
|
39 |
trigger_categories = {
|
40 |
"Violence": {
|
41 |
"mapped_name": "Violence",
|
42 |
+
"description": (
|
43 |
+
"Any act involving physical force or aggression intended to cause harm, injury, or death to a person, animal, or object. "
|
44 |
+
"Includes direct physical confrontations (e.g., fights, beatings, or assaults), implied violence (e.g., very graphical threats or descriptions of injuries), "
|
45 |
+
"or large-scale events like wars, riots, or violent protests."
|
46 |
+
)
|
47 |
},
|
48 |
"Death": {
|
49 |
"mapped_name": "Death References",
|
50 |
+
"description": (
|
51 |
+
"Any mention, implication, or depiction of the loss of life, including direct deaths of characters, including mentions of deceased individuals, "
|
52 |
+
"or abstract references to mortality (e.g., 'facing the end' or 'gone forever'). This also covers depictions of funerals, mourning, "
|
53 |
+
"grieving, or any dialogue that centers around death, do not take metaphors into context that don't actually lead to death."
|
54 |
+
)
|
55 |
},
|
56 |
+
"Substance Use": {
|
57 |
"mapped_name": "Substance Use",
|
58 |
+
"description": (
|
59 |
+
"Any explicit or implied reference to the consumption, misuse, or abuse of drugs, alcohol, or other intoxicating substances. "
|
60 |
+
"Includes scenes of drinking, smoking, or drug use, whether recreational or addictive. May also cover references to withdrawal symptoms, "
|
61 |
+
"rehabilitation, or substance-related paraphernalia (e.g., needles, bottles, pipes)."
|
62 |
+
)
|
63 |
},
|
64 |
"Gore": {
|
65 |
"mapped_name": "Gore",
|
66 |
+
"description": (
|
67 |
+
"Extremely detailed and graphic depictions of highly severe physical injuries, mutilation, or extreme bodily harm, often accompanied by descriptions of heavy blood, exposed organs, "
|
68 |
+
"or dismemberment. This includes war scenes with severe casualties, horror scenarios involving grotesque creatures, or medical procedures depicted with excessive detail."
|
69 |
+
)
|
70 |
+
},
|
71 |
+
"Vomit": {
|
72 |
+
"mapped_name": "Vomit",
|
73 |
+
"description": (
|
74 |
+
"Any reference to the act of vomiting, whether directly described, implied, or depicted in detail. This includes sounds or visual descriptions of the act, "
|
75 |
+
"mentions of nausea leading to vomiting, or its aftermath (e.g., the presence of vomit, cleaning it up, or characters reacting to it)."
|
76 |
+
)
|
77 |
},
|
78 |
+
"Sexual Content": {
|
79 |
"mapped_name": "Sexual Content",
|
80 |
+
"description": (
|
81 |
+
"Any depiction or mention of sexual activity, intimacy, or sexual behavior, ranging from implied scenes to explicit descriptions. "
|
82 |
+
"This includes romantic encounters, physical descriptions of characters in a sexual context, sexual dialogue, or references to sexual themes (e.g., harassment, innuendos)."
|
83 |
+
)
|
84 |
+
},
|
85 |
+
"Sexual Abuse": {
|
86 |
+
"mapped_name": "Sexual Abuse",
|
87 |
+
"description": (
|
88 |
+
"Any form of non-consensual sexual act, behavior, or interaction, involving coercion, manipulation, or physical force. "
|
89 |
+
"This includes incidents of sexual assault, molestation, exploitation, harassment, and any acts where an individual is subjected to sexual acts against their will or without their consent. "
|
90 |
+
"It also covers discussions or depictions of the aftermath of such abuse, such as trauma, emotional distress, legal proceedings, or therapy. "
|
91 |
+
"References to inappropriate sexual advances, groping, or any other form of sexual misconduct are also included, as well as the psychological and emotional impact on survivors. "
|
92 |
+
"Scenes where individuals are placed in sexually compromising situations, even if not directly acted upon, may also fall under this category."
|
93 |
+
)
|
94 |
},
|
95 |
+
"Self-Harm": {
|
96 |
"mapped_name": "Self-Harm",
|
97 |
+
"description": (
|
98 |
+
"Any mention or depiction of behaviors where an individual intentionally causes harm to themselves. This includes cutting, burning, or other forms of physical injury, "
|
99 |
+
"as well as suicidal ideation, suicide attempts, or discussions of self-destructive thoughts and actions. References to scars, bruises, or other lasting signs of self-harm are also included."
|
100 |
+
)
|
101 |
},
|
102 |
+
"Gun Use": {
|
103 |
"mapped_name": "Gun Use",
|
104 |
+
"description": (
|
105 |
+
"Any explicit or implied mention of firearms being handled, fired, or used in a threatening manner. This includes scenes of gun violence, references to shootings, "
|
106 |
+
"gun-related accidents, or the presence of firearms in a tense or dangerous context (e.g., holstered weapons during an argument)."
|
107 |
+
)
|
108 |
},
|
109 |
+
"Animal Cruelty": {
|
110 |
"mapped_name": "Animal Cruelty",
|
111 |
+
"description": (
|
112 |
+
"Any act of harm, abuse, or neglect toward animals, whether intentional or accidental. This includes physical abuse (e.g., hitting, injuring, or killing animals), "
|
113 |
+
"mental or emotional mistreatment (e.g., starvation, isolation), and scenes where animals are subjected to pain or suffering for human entertainment or experimentation."
|
114 |
+
)
|
115 |
},
|
116 |
+
"Mental Health Issues": {
|
117 |
"mapped_name": "Mental Health Issues",
|
118 |
+
"description": (
|
119 |
+
"Any reference to mental health struggles, disorders, or psychological distress. This includes mentions of depression, anxiety, PTSD, bipolar disorder, schizophrenia, "
|
120 |
+
"or other conditions. Scenes depicting therapy sessions, psychiatric treatment, or coping mechanisms (e.g., medication, journaling) are also included. May cover subtle hints "
|
121 |
+
"like a character expressing feelings of worthlessness, hopelessness, or detachment from reality."
|
122 |
+
)
|
123 |
}
|
124 |
}
|
125 |
|
126 |
+
print("\nProcessing text...") # Output indicating the text is being processed
|
127 |
+
chunk_size = 256 # Set the chunk size for text processing
|
128 |
+
overlap = 15 # Overlap between chunks for context preservation
|
129 |
+
script_chunks = [script[i:i + chunk_size] for i in range(0, len(script), chunk_size - overlap)]
|
130 |
+
|
131 |
identified_triggers = {}
|
132 |
|
133 |
for chunk_idx, chunk in enumerate(script_chunks, 1):
|
134 |
print(f"\n--- Processing Chunk {chunk_idx}/{len(script_chunks)} ---")
|
135 |
for category, info in trigger_categories.items():
|
136 |
+
mapped_name = info["mapped_name"]
|
137 |
+
description = info["description"]
|
138 |
+
|
139 |
+
print(f"\nAnalyzing for {mapped_name}...")
|
140 |
+
prompt = f"""
|
141 |
+
Check this text for any indication of {mapped_name} ({description}).
|
142 |
+
Be sensitive to subtle references or implications, make sure the text is not metaphorical.
|
143 |
+
Respond concisely with: YES, NO, or MAYBE.
|
144 |
+
Text: {chunk}
|
145 |
+
Answer:
|
146 |
+
"""
|
147 |
+
|
148 |
+
print(f"Sending prompt to model...") # Indicate that prompt is being sent to the model
|
149 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) # Tokenize the prompt
|
150 |
+
inputs = {k: v.to(device) for k, v in inputs.items()} # Send inputs to the chosen device
|
151 |
+
|
152 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
153 |
+
print("Generating response...") # Indicate that the model is generating a response
|
154 |
+
outputs = model.generate(
|
155 |
+
**inputs,
|
156 |
+
max_new_tokens=3, # Limit response length
|
157 |
+
do_sample=True, # Enable sampling for more diverse output
|
158 |
+
temperature=0.5, # Control randomness of the output
|
159 |
+
top_p=0.9, # Use nucleus sampling
|
160 |
+
pad_token_id=tokenizer.eos_token_id # Pad token ID
|
161 |
+
)
|
162 |
+
|
163 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True).strip().upper() # Decode and format the response
|
164 |
+
first_word = response_text.split("\n")[-1].split()[0] if response_text else "NO" # Get the first word of the response
|
165 |
+
print(f"Model response for {mapped_name}: {first_word}")
|
166 |
+
|
167 |
+
# Update identified triggers based on model response
|
168 |
+
if first_word == "YES":
|
169 |
+
print(f"Detected {mapped_name} in this chunk!") # Trigger detected
|
170 |
+
identified_triggers[mapped_name] = identified_triggers.get(mapped_name, 0) + 1
|
171 |
+
elif first_word == "MAYBE":
|
172 |
+
print(f"Possible {mapped_name} detected, marking for further review.") # Possible trigger detected
|
173 |
+
identified_triggers[mapped_name] = identified_triggers.get(mapped_name, 0) + 0.5
|
174 |
+
else:
|
175 |
+
print(f"No {mapped_name} detected in this chunk.") # No trigger detected
|
176 |
|
177 |
+
print("\n=== Analysis Complete ===") # Indicate that analysis is complete
|
178 |
+
print("Final Results:")
|
179 |
+
final_triggers = [] # List to store final triggers
|
180 |
+
|
181 |
+
# Filter and output the final trigger results
|
182 |
+
for mapped_name, count in identified_triggers.items():
|
183 |
+
if count > 0.5:
|
184 |
+
final_triggers.append(mapped_name)
|
185 |
+
print(f"- {mapped_name}: found in {count} chunks")
|
186 |
|
|
|
187 |
if not final_triggers:
|
188 |
+
final_triggers = ["None"]
|
189 |
+
|
190 |
+
return final_triggers
|
191 |
+
|
192 |
+
def analyze_content(script):
|
193 |
+
triggers = analyze_script(script)
|
194 |
+
|
195 |
+
if isinstance(triggers, list) and triggers != ["None"]:
|
196 |
+
result = {
|
197 |
+
"detected_triggers": triggers,
|
198 |
+
"confidence": "High - Content detected",
|
199 |
+
"model": "Llama-3.2-1B",
|
200 |
+
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
201 |
+
}
|
202 |
+
else:
|
203 |
+
result = {
|
204 |
+
"detected_triggers": ["None"],
|
205 |
+
"confidence": "High - No concerning content detected",
|
206 |
+
"model": "Llama-3.2-1B",
|
207 |
+
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
208 |
+
}
|
209 |
+
|
210 |
+
print("\nFinal Result Dictionary:", result)
|
211 |
+
return result
|
212 |
+
|
213 |
+
# Define the Gradio interface
|
214 |
+
import gradio as gr
|
215 |
+
from model import analyze_script # Import the function to analyze the content
|
216 |
+
|
217 |
+
def analyze_content(script):
|
218 |
+
# Perform the analysis on the input script using the analyze_script function
|
219 |
+
triggers = analyze_script(script)
|
220 |
+
|
221 |
+
# Define the result based on the triggers found
|
222 |
+
if isinstance(triggers, list) and triggers != ["None"]:
|
223 |
+
result = {
|
224 |
+
"detected_triggers": triggers,
|
225 |
+
"confidence": "High - Content detected",
|
226 |
+
"model": "Llama-3.2-1B",
|
227 |
+
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
228 |
+
}
|
229 |
+
else:
|
230 |
+
result = {
|
231 |
+
"detected_triggers": ["None"],
|
232 |
+
"confidence": "High - No concerning content detected",
|
233 |
+
"model": "Llama-3.2-1B",
|
234 |
+
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
235 |
+
}
|
236 |
+
|
237 |
+
print("\nFinal Result Dictionary:", result)
|
238 |
+
return result
|
239 |
+
|
240 |
+
# Create and launch the Gradio interface
|
241 |
+
iface = gr.Interface(
|
242 |
+
fn=analyze_content,
|
243 |
+
inputs=gr.Textbox(lines=8, label="Input Text"),
|
244 |
+
outputs=gr.JSON(),
|
245 |
+
title="Content Analysis",
|
246 |
+
description="Analyze text content for sensitive topics"
|
247 |
+
)
|
248 |
|
249 |
+
if __name__ == "__main__":
|
250 |
+
iface.launch()
|
|
|
|