Spaces:
Running
Running
Commit
·
8ea6312
1
Parent(s):
474b075
something broke, trying model without the loading bar.
Browse files- gradio_app.py +28 -31
- model/analyzer.py +13 -26
gradio_app.py
CHANGED
@@ -8,14 +8,12 @@ custom_css = """
|
|
8 |
* {
|
9 |
font-family: 'Roboto', sans-serif;
|
10 |
}
|
11 |
-
|
12 |
.gradio-container {
|
13 |
background: #121212 !important;
|
14 |
color: #fff !important;
|
15 |
overflow: hidden;
|
16 |
transition: background 0.5s ease;
|
17 |
}
|
18 |
-
|
19 |
.treat-title {
|
20 |
text-align: center;
|
21 |
padding: 40px;
|
@@ -25,7 +23,6 @@ custom_css = """
|
|
25 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3);
|
26 |
animation: slideInFromTop 1s ease-out;
|
27 |
}
|
28 |
-
|
29 |
.treat-title h1 {
|
30 |
font-size: 5em;
|
31 |
color: #4f46e5;
|
@@ -33,18 +30,15 @@ custom_css = """
|
|
33 |
font-weight: bold;
|
34 |
animation: fadeInText 1.5s ease-out;
|
35 |
}
|
36 |
-
|
37 |
.treat-title p {
|
38 |
font-size: 1.3em;
|
39 |
color: #4f46e5;
|
40 |
animation: fadeInText 1.5s ease-out 0.5s;
|
41 |
}
|
42 |
-
|
43 |
.highlight {
|
44 |
color: #4f46e5;
|
45 |
font-weight: bold;
|
46 |
}
|
47 |
-
|
48 |
.content-area, .results-area {
|
49 |
background: rgba(33, 33, 33, 0.9) !important;
|
50 |
border-radius: 15px !important;
|
@@ -54,7 +48,6 @@ custom_css = """
|
|
54 |
opacity: 0;
|
55 |
animation: fadeInUp 1s forwards;
|
56 |
}
|
57 |
-
|
58 |
.gradio-textbox textarea {
|
59 |
background-color: #333 !important;
|
60 |
color: #fff !important;
|
@@ -64,11 +57,9 @@ custom_css = """
|
|
64 |
font-size: 1.1em !important;
|
65 |
transition: border-color 0.3s ease;
|
66 |
}
|
67 |
-
|
68 |
.gradio-textbox textarea:focus {
|
69 |
border-color: #4f46e5 !important;
|
70 |
}
|
71 |
-
|
72 |
.gradio-button {
|
73 |
background-color: #4f46e5 !important;
|
74 |
color: white !important;
|
@@ -79,29 +70,24 @@ custom_css = """
|
|
79 |
transition: transform 0.3s ease, background-color 0.3s ease;
|
80 |
margin: 20px 0 !important;
|
81 |
}
|
82 |
-
|
83 |
.gradio-button:hover {
|
84 |
transform: scale(1.1) !important;
|
85 |
background-color: #5749d3 !important;
|
86 |
}
|
87 |
-
|
88 |
.gradio-button:active {
|
89 |
transform: scale(0.98) !important;
|
90 |
background-color: #4b40bb !important;
|
91 |
}
|
92 |
-
|
93 |
label {
|
94 |
color: #ccc !important;
|
95 |
font-weight: 500 !important;
|
96 |
margin-bottom: 10px !important;
|
97 |
}
|
98 |
-
|
99 |
.center-row {
|
100 |
display: flex;
|
101 |
justify-content: center;
|
102 |
align-items: center;
|
103 |
}
|
104 |
-
|
105 |
.footer {
|
106 |
text-align: center;
|
107 |
margin-top: 40px;
|
@@ -110,45 +96,55 @@ label {
|
|
110 |
opacity: 0;
|
111 |
animation: fadeInUp 1s forwards 1.5s;
|
112 |
}
|
113 |
-
|
114 |
.footer p {
|
115 |
color: #4f46e5;
|
116 |
}
|
117 |
-
|
118 |
@keyframes slideInFromTop {
|
119 |
0% { transform: translateY(-50px); opacity: 0; }
|
120 |
100% { transform: translateY(0); opacity: 1; }
|
121 |
}
|
122 |
-
|
123 |
@keyframes fadeInText {
|
124 |
0% { opacity: 0; }
|
125 |
100% { opacity: 1; }
|
126 |
}
|
127 |
-
|
128 |
@keyframes fadeInUp {
|
129 |
0% { opacity: 0; transform: translateY(30px); }
|
130 |
100% { opacity: 1; transform: translateY(0); }
|
131 |
}
|
132 |
"""
|
133 |
|
134 |
-
|
135 |
"""
|
136 |
-
|
137 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
try:
|
139 |
-
#
|
140 |
-
result =
|
141 |
-
|
142 |
-
# Format the results
|
143 |
-
triggers = result["detected_triggers"]
|
144 |
-
if triggers == ["None"]:
|
145 |
-
return "✓ No concerns detected in the content."
|
146 |
-
else:
|
147 |
-
trigger_list = "\n".join([f"• {trigger}" for trigger in triggers])
|
148 |
-
return f"⚠ Triggers Detected:\n{trigger_list}"
|
149 |
-
|
150 |
except Exception as e:
|
151 |
return f"Error during analysis: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
# Create the Gradio interface
|
154 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
|
@@ -206,6 +202,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
|
|
206 |
""")
|
207 |
|
208 |
if __name__ == "__main__":
|
|
|
209 |
iface.launch(
|
210 |
share=False,
|
211 |
debug=True,
|
|
|
8 |
* {
|
9 |
font-family: 'Roboto', sans-serif;
|
10 |
}
|
|
|
11 |
.gradio-container {
|
12 |
background: #121212 !important;
|
13 |
color: #fff !important;
|
14 |
overflow: hidden;
|
15 |
transition: background 0.5s ease;
|
16 |
}
|
|
|
17 |
.treat-title {
|
18 |
text-align: center;
|
19 |
padding: 40px;
|
|
|
23 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3);
|
24 |
animation: slideInFromTop 1s ease-out;
|
25 |
}
|
|
|
26 |
.treat-title h1 {
|
27 |
font-size: 5em;
|
28 |
color: #4f46e5;
|
|
|
30 |
font-weight: bold;
|
31 |
animation: fadeInText 1.5s ease-out;
|
32 |
}
|
|
|
33 |
.treat-title p {
|
34 |
font-size: 1.3em;
|
35 |
color: #4f46e5;
|
36 |
animation: fadeInText 1.5s ease-out 0.5s;
|
37 |
}
|
|
|
38 |
.highlight {
|
39 |
color: #4f46e5;
|
40 |
font-weight: bold;
|
41 |
}
|
|
|
42 |
.content-area, .results-area {
|
43 |
background: rgba(33, 33, 33, 0.9) !important;
|
44 |
border-radius: 15px !important;
|
|
|
48 |
opacity: 0;
|
49 |
animation: fadeInUp 1s forwards;
|
50 |
}
|
|
|
51 |
.gradio-textbox textarea {
|
52 |
background-color: #333 !important;
|
53 |
color: #fff !important;
|
|
|
57 |
font-size: 1.1em !important;
|
58 |
transition: border-color 0.3s ease;
|
59 |
}
|
|
|
60 |
.gradio-textbox textarea:focus {
|
61 |
border-color: #4f46e5 !important;
|
62 |
}
|
|
|
63 |
.gradio-button {
|
64 |
background-color: #4f46e5 !important;
|
65 |
color: white !important;
|
|
|
70 |
transition: transform 0.3s ease, background-color 0.3s ease;
|
71 |
margin: 20px 0 !important;
|
72 |
}
|
|
|
73 |
.gradio-button:hover {
|
74 |
transform: scale(1.1) !important;
|
75 |
background-color: #5749d3 !important;
|
76 |
}
|
|
|
77 |
.gradio-button:active {
|
78 |
transform: scale(0.98) !important;
|
79 |
background-color: #4b40bb !important;
|
80 |
}
|
|
|
81 |
label {
|
82 |
color: #ccc !important;
|
83 |
font-weight: 500 !important;
|
84 |
margin-bottom: 10px !important;
|
85 |
}
|
|
|
86 |
.center-row {
|
87 |
display: flex;
|
88 |
justify-content: center;
|
89 |
align-items: center;
|
90 |
}
|
|
|
91 |
.footer {
|
92 |
text-align: center;
|
93 |
margin-top: 40px;
|
|
|
96 |
opacity: 0;
|
97 |
animation: fadeInUp 1s forwards 1.5s;
|
98 |
}
|
|
|
99 |
.footer p {
|
100 |
color: #4f46e5;
|
101 |
}
|
|
|
102 |
@keyframes slideInFromTop {
|
103 |
0% { transform: translateY(-50px); opacity: 0; }
|
104 |
100% { transform: translateY(0); opacity: 1; }
|
105 |
}
|
|
|
106 |
@keyframes fadeInText {
|
107 |
0% { opacity: 0; }
|
108 |
100% { opacity: 1; }
|
109 |
}
|
|
|
110 |
@keyframes fadeInUp {
|
111 |
0% { opacity: 0; transform: translateY(30px); }
|
112 |
100% { opacity: 1; transform: translateY(0); }
|
113 |
}
|
114 |
"""
|
115 |
|
116 |
+
def analyze_with_loading(text, progress=gr.Progress()):
|
117 |
"""
|
118 |
+
Synchronous wrapper for the async analyze_content function
|
119 |
"""
|
120 |
+
# Initialize progress
|
121 |
+
progress(0, desc="Starting analysis...")
|
122 |
+
|
123 |
+
# Initial setup phase
|
124 |
+
for i in range(30):
|
125 |
+
time.sleep(0.02) # Reduced sleep time
|
126 |
+
progress((i + 1) / 100)
|
127 |
+
|
128 |
+
# Perform analysis
|
129 |
+
progress(0.3, desc="Processing text...")
|
130 |
try:
|
131 |
+
# Use asyncio.run to handle the async function call
|
132 |
+
result = asyncio.run(analyze_content(text))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
except Exception as e:
|
134 |
return f"Error during analysis: {str(e)}"
|
135 |
+
|
136 |
+
# Final processing
|
137 |
+
for i in range(70, 100):
|
138 |
+
time.sleep(0.02) # Reduced sleep time
|
139 |
+
progress((i + 1) / 100)
|
140 |
+
|
141 |
+
# Format the results
|
142 |
+
triggers = result["detected_triggers"]
|
143 |
+
if triggers == ["None"]:
|
144 |
+
return "✓ No triggers detected in the content."
|
145 |
+
else:
|
146 |
+
trigger_list = "\n".join([f"• {trigger}" for trigger in triggers])
|
147 |
+
return f"⚠ Triggers Detected:\n{trigger_list}"
|
148 |
|
149 |
# Create the Gradio interface
|
150 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
|
|
|
202 |
""")
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
# Launch without the 'ssr' argument
|
206 |
iface.launch(
|
207 |
share=False,
|
208 |
debug=True,
|
model/analyzer.py
CHANGED
@@ -122,7 +122,7 @@ class ContentAnalyzer:
|
|
122 |
)
|
123 |
|
124 |
if progress:
|
125 |
-
progress(0.
|
126 |
|
127 |
self.model = AutoModelForCausalLM.from_pretrained(
|
128 |
"meta-llama/Llama-3.2-1B",
|
@@ -132,7 +132,7 @@ class ContentAnalyzer:
|
|
132 |
)
|
133 |
|
134 |
if progress:
|
135 |
-
progress(0.
|
136 |
|
137 |
logger.info(f"Model loaded successfully on {self.device}")
|
138 |
except Exception as e:
|
@@ -147,6 +147,7 @@ class ContentAnalyzer:
|
|
147 |
|
148 |
while start < text_len:
|
149 |
end = min(start + chunk_size, text_len)
|
|
|
150 |
if end < text_len:
|
151 |
last_period = max(
|
152 |
text.rfind('. ', start, end),
|
@@ -164,6 +165,7 @@ class ContentAnalyzer:
|
|
164 |
"""Process model response and return a confidence score."""
|
165 |
response = response_text.strip().upper()
|
166 |
|
|
|
167 |
if "YES" in response:
|
168 |
evidence_words = ["CLEAR", "DEFINITELY", "EXPLICIT", "STRONG"]
|
169 |
return 1.0 if any(word in response for word in evidence_words) else 0.8
|
@@ -172,6 +174,7 @@ class ContentAnalyzer:
|
|
172 |
elif "NO" in response:
|
173 |
return 0.0
|
174 |
|
|
|
175 |
positive_indicators = ["PRESENT", "FOUND", "CONTAINS", "SHOWS", "INDICATES"]
|
176 |
negative_indicators = ["ABSENT", "NONE", "NOTHING", "LACKS"]
|
177 |
|
@@ -191,7 +194,6 @@ class ContentAnalyzer:
|
|
191 |
) -> Dict[str, float]:
|
192 |
"""Analyze a single chunk of text for triggers."""
|
193 |
chunk_triggers = {}
|
194 |
-
progress_increment = progress_step / len(self.trigger_categories)
|
195 |
|
196 |
for category, info in self.trigger_categories.items():
|
197 |
mapped_name = info["mapped_name"]
|
@@ -236,8 +238,8 @@ class ContentAnalyzer:
|
|
236 |
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + confidence
|
237 |
|
238 |
if progress:
|
239 |
-
current_progress +=
|
240 |
-
progress(min(current_progress, 0.9), f"Analyzing
|
241 |
|
242 |
except Exception as e:
|
243 |
logger.error(f"Error analyzing chunk for {mapped_name}: {str(e)}")
|
@@ -251,40 +253,28 @@ class ContentAnalyzer:
|
|
251 |
|
252 |
chunks = self._chunk_text(script)
|
253 |
trigger_scores = {}
|
254 |
-
|
255 |
-
|
256 |
-
analysis_progress = 0.7 # 70% of progress for analysis
|
257 |
-
progress_per_chunk = analysis_progress / len(chunks)
|
258 |
-
current_progress = 0.2 # Starting after model loading
|
259 |
-
|
260 |
-
if progress:
|
261 |
-
progress(current_progress, "Beginning content analysis...")
|
262 |
|
263 |
-
for
|
264 |
chunk_triggers = await self.analyze_chunk(
|
265 |
chunk,
|
266 |
progress,
|
267 |
current_progress,
|
268 |
-
|
269 |
)
|
270 |
|
271 |
for trigger, score in chunk_triggers.items():
|
272 |
trigger_scores[trigger] = trigger_scores.get(trigger, 0) + score
|
273 |
-
|
274 |
-
current_progress += progress_per_chunk
|
275 |
-
if progress:
|
276 |
-
chunk_number = i + 1
|
277 |
-
progress(min(0.9, current_progress),
|
278 |
-
f"Processing chunk {chunk_number}/{len(chunks)}...")
|
279 |
|
280 |
if progress:
|
281 |
-
progress(0.95, "Finalizing
|
282 |
|
283 |
# Normalize scores by number of chunks and apply threshold
|
284 |
chunk_count = len(chunks)
|
285 |
final_triggers = [
|
286 |
trigger for trigger, score in trigger_scores.items()
|
287 |
-
if score / chunk_count > 0.3
|
288 |
]
|
289 |
|
290 |
return final_triggers if final_triggers else ["None"]
|
@@ -297,9 +287,6 @@ async def analyze_content(
|
|
297 |
analyzer = ContentAnalyzer()
|
298 |
|
299 |
try:
|
300 |
-
if progress:
|
301 |
-
progress(0.0, "Initializing analyzer...")
|
302 |
-
|
303 |
triggers = await analyzer.analyze_script(script, progress)
|
304 |
|
305 |
if progress:
|
|
|
122 |
)
|
123 |
|
124 |
if progress:
|
125 |
+
progress(0.3, "Loading model...")
|
126 |
|
127 |
self.model = AutoModelForCausalLM.from_pretrained(
|
128 |
"meta-llama/Llama-3.2-1B",
|
|
|
132 |
)
|
133 |
|
134 |
if progress:
|
135 |
+
progress(0.5, "Model loaded successfully")
|
136 |
|
137 |
logger.info(f"Model loaded successfully on {self.device}")
|
138 |
except Exception as e:
|
|
|
147 |
|
148 |
while start < text_len:
|
149 |
end = min(start + chunk_size, text_len)
|
150 |
+
# Find the last period or newline in the chunk to avoid cutting sentences
|
151 |
if end < text_len:
|
152 |
last_period = max(
|
153 |
text.rfind('. ', start, end),
|
|
|
165 |
"""Process model response and return a confidence score."""
|
166 |
response = response_text.strip().upper()
|
167 |
|
168 |
+
# Check for explicit YES/NO/MAYBE
|
169 |
if "YES" in response:
|
170 |
evidence_words = ["CLEAR", "DEFINITELY", "EXPLICIT", "STRONG"]
|
171 |
return 1.0 if any(word in response for word in evidence_words) else 0.8
|
|
|
174 |
elif "NO" in response:
|
175 |
return 0.0
|
176 |
|
177 |
+
# Fallback analysis for unclear responses
|
178 |
positive_indicators = ["PRESENT", "FOUND", "CONTAINS", "SHOWS", "INDICATES"]
|
179 |
negative_indicators = ["ABSENT", "NONE", "NOTHING", "LACKS"]
|
180 |
|
|
|
194 |
) -> Dict[str, float]:
|
195 |
"""Analyze a single chunk of text for triggers."""
|
196 |
chunk_triggers = {}
|
|
|
197 |
|
198 |
for category, info in self.trigger_categories.items():
|
199 |
mapped_name = info["mapped_name"]
|
|
|
238 |
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + confidence
|
239 |
|
240 |
if progress:
|
241 |
+
current_progress += progress_step
|
242 |
+
progress(min(current_progress, 0.9), f"Analyzing {mapped_name}...")
|
243 |
|
244 |
except Exception as e:
|
245 |
logger.error(f"Error analyzing chunk for {mapped_name}: {str(e)}")
|
|
|
253 |
|
254 |
chunks = self._chunk_text(script)
|
255 |
trigger_scores = {}
|
256 |
+
progress_step = 0.4 / (len(chunks) * len(self.trigger_categories))
|
257 |
+
current_progress = 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
for chunk in chunks:
|
260 |
chunk_triggers = await self.analyze_chunk(
|
261 |
chunk,
|
262 |
progress,
|
263 |
current_progress,
|
264 |
+
progress_step
|
265 |
)
|
266 |
|
267 |
for trigger, score in chunk_triggers.items():
|
268 |
trigger_scores[trigger] = trigger_scores.get(trigger, 0) + score
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
if progress:
|
271 |
+
progress(0.95, "Finalizing results...")
|
272 |
|
273 |
# Normalize scores by number of chunks and apply threshold
|
274 |
chunk_count = len(chunks)
|
275 |
final_triggers = [
|
276 |
trigger for trigger, score in trigger_scores.items()
|
277 |
+
if score / chunk_count > 0.3 # Adjusted threshold for better balance
|
278 |
]
|
279 |
|
280 |
return final_triggers if final_triggers else ["None"]
|
|
|
287 |
analyzer = ContentAnalyzer()
|
288 |
|
289 |
try:
|
|
|
|
|
|
|
290 |
triggers = await analyzer.analyze_script(script, progress)
|
291 |
|
292 |
if progress:
|