Spaces:
Runtime error
Runtime error
import spaces | |
import random | |
import torch | |
import cv2 | |
import insightface | |
import gradio as gr | |
import numpy as np | |
from huggingface_hub import snapshot_download | |
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor | |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from diffusers import AutoencoderKL | |
from kolors.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import EulerDiscreteScheduler | |
from PIL import Image | |
from insightface.app import FaceAnalysis | |
from insightface.data import get_image as ins_get_image | |
device = "cuda" | |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") | |
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus") | |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True) | |
clip_image_encoder.to(device) | |
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336) | |
pipe = StableDiffusionXLPipeline( | |
vae = vae, | |
text_encoder = text_encoder, | |
tokenizer = tokenizer, | |
unet = unet, | |
scheduler = scheduler, | |
face_clip_encoder = clip_image_encoder, | |
face_clip_processor = clip_image_processor, | |
force_zeros_for_empty_prompt = False, | |
) | |
class FaceInfoGenerator(): | |
def __init__(self, root_dir = "./.insightface/"): | |
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
self.app.prepare(ctx_id = 0, det_size = (640, 640)) | |
def get_faceinfo_one_img(self, face_image): | |
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
if len(face_info) == 0: | |
face_info = None | |
else: | |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face | |
return face_info | |
def face_bbox_to_square(bbox): | |
## l, t, r, b to square l, t, r, b | |
l,t,r,b = bbox | |
cent_x = (l + r) / 2 | |
cent_y = (t + b) / 2 | |
w, h = r - l, b - t | |
r = max(w, h) / 2 | |
l0 = cent_x - r | |
r0 = cent_x + r | |
t0 = cent_y - r | |
b0 = cent_y + r | |
return [l0, t0, r0, b0] | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, | |
image = None, | |
negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯", | |
seed = 66, | |
randomize_seed = False, | |
guidance_scale = 5.0, | |
num_inference_steps = 50 | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
global pipe | |
pipe = pipe.to(device) | |
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device) | |
scale = 0.8 | |
pipe.set_face_fidelity_scale(scale) | |
face_info_generator = FaceInfoGenerator() | |
face_info = face_info_generator.get_faceinfo_one_img(image) | |
face_bbox_square = face_bbox_to_square(face_info["bbox"]) | |
crop_image = image.crop(face_bbox_square) | |
crop_image = crop_image.resize((336, 336)) | |
crop_image = [crop_image] | |
face_embeds = torch.from_numpy(np.array([face_info["embedding"]])) | |
face_embeds = face_embeds.to(device, dtype = torch.float16) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
height = 1024, | |
width = 1024, | |
num_inference_steps= num_inference_steps, | |
guidance_scale = guidance_scale, | |
num_images_per_prompt = 1, | |
generator = generator, | |
face_crop_image = crop_image, | |
face_insightface_embeds = face_embeds | |
).images[0] | |
return image, seed | |
examples = [ | |
["穿着晚礼服,在星光下的晚宴场景中,烛光闪闪,整个场景洋溢着浪漫而奢华的氛围", "image/image1.png"], | |
["西部牛仔,牛仔帽,荒野大镖客,背景是西部小镇,仙人掌,,日落余晖, 暖色调, 使用XT4胶片拍摄, 噪点, 晕影, 柯达胶卷,复古", "image/image2.png"] | |
] | |
css=""" | |
#col-left { | |
margin: 0 auto; | |
max-width: 600px; | |
} | |
#col-right { | |
margin: 0 auto; | |
max-width: 750px; | |
} | |
#button { | |
color: blue; | |
} | |
""" | |
def load_description(fp): | |
with open(fp, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
with gr.Blocks(css=css) as Kolors: | |
gr.HTML(load_description("assets/title.md")) | |
with gr.Row(): | |
with gr.Column(elem_id="col-left"): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt", | |
lines=2 | |
) | |
with gr.Row(): | |
image = gr.Image(label="Image", type="pil") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=10, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
with gr.Row(): | |
button = gr.Button("Run", elem_id="button") | |
with gr.Column(elem_id="col-right"): | |
result = gr.Image(label="Result", show_label=False) | |
seed_used = gr.Number(label="Seed Used") | |
with gr.Row(): | |
gr.Examples( | |
fn = infer, | |
examples = examples, | |
inputs = [prompt, image], | |
outputs = [result, seed_used], | |
) | |
button.click( | |
fn = infer, | |
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps], | |
outputs = [result, seed_used] | |
) | |
Kolors.queue().launch(debug=True) | |