Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,573 Bytes
f69cd15 eaa8689 f69cd15 1ecb321 eaa8689 5cbc9b1 6af3026 1ecb321 eaa8689 dbe8337 0805db6 eaa8689 8c2fca3 eaa8689 8c2fca3 eaa8689 8654223 f26d335 8654223 49eabb6 6803e6c 49eabb6 6803e6c 6af3026 5699bf9 b453f9d 5699bf9 5e35140 f6e997e 5e35140 8c2fca3 b453f9d cc17840 a9ba2aa 6af3026 b453f9d 1ecb321 534e5bb f69cd15 1ecb321 f69cd15 5e35140 01db67e 5e35140 f69cd15 1ecb321 e08a1e8 f69cd15 4db4e89 a9ba2aa 4db4e89 f69cd15 1ecb321 f69cd15 1ecb321 fc8d8be f69cd15 01db67e ad30fcb 4311e2a f69cd15 1e19884 f69cd15 1ecb321 01db67e 4311e2a f69cd15 1e19884 cc17840 01db67e fa6131f b453f9d 7de6d0d 534e5bb 7de6d0d fa6131f 7de6d0d 1ecb321 b453f9d 1ecb321 4db4e89 31b8014 4db4e89 d562784 4db4e89 68b15ec e73c140 4db4e89 a9ba2aa 5900e16 4db4e89 d77e663 5cbc9b1 8654223 f69cd15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import cv2
from PIL import Image
import gradio as gr
import numpy as np
import random
import base64
import requests
import json
def start_tryon(person_img, garment_img, seed, randomize_seed):
if person_img is None or garment_img is None:
return None, None, "Empty image"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')
url = "http://" + os.environ['tryon_url']
token = os.environ['token']
cookie = os.environ['Cookie']
referer = os.environ['referer']
headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
data = {
"clothImage": encoded_garment_img,
"humanImage": encoded_person_img,
"seed": seed
}
response = requests.post(url, headers=headers, data=json.dumps(data))
print("response code", response.status_code)
result_img = None
if response.status_code == 200:
result = response.json()['result']
status = result['status']
if status == "success":
result = base64.b64decode(result['result'])
result_np = np.frombuffer(result, np.uint8)
result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
info = "Success"
else:
info = "Try again latter"
else:
print(response.text)
info = "URL error, pleace contact the admin"
return result_img, seed, info
MAX_SEED = 999999
example_path = os.path.join(os.path.dirname(__file__), 'assets')
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
css="""
#col-left {
margin: 0 auto;
max-width: 380px;
}
#col-mid {
margin: 0 auto;
max-width: 380px;
}
#col-right {
margin: 0 auto;
max-width: 520px;
}
#col-showcase {
margin: 0 auto;
max-width: 1100px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
def change_imgs(image1, image2):
return image1, image2
with gr.Blocks(css=css) as Tryon:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id = "col-left"):
gr.Markdown("### Step 1. Upload a person image. ⬇️")
with gr.Column(elem_id = "col-mid"):
gr.Markdown("### Step 2. Upload a garment image. ⬇️")
with gr.Column(elem_id = "col-right"):
gr.Markdown("### Step 3. Press the “Run” button to get try-on results.")
with gr.Row():
with gr.Column(elem_id = "col-left"):
imgs = gr.Image(label="Person image", sources='upload', type="numpy")
# category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'], value="upper_body")
example = gr.Examples(
inputs=imgs,
examples_per_page=12,
examples=human_list_path
)
with gr.Column(elem_id = "col-mid"):
garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
example = gr.Examples(
inputs=garm_img,
examples_per_page=12,
examples=garm_list_path
)
with gr.Column(elem_id = "col-right"):
image_out = gr.Image(label="Result", show_share_button=False)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Random seed", value=True)
with gr.Row():
seed_used = gr.Number(label="Seed used")
result_info = gr.Text(label="Response")
try_button = gr.Button(value="Run", elem_id="button")
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon')
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h2>Virtual try-on examples in pairs of person and garment images.</h2>
</div>
</div>
""")
with gr.Column(elem_id = "col-showcase"):
show_case = gr.Examples(
examples=[
["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
],
inputs=[imgs, garm_img, image_out],
label=None
)
ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
print("ip address", ip)
Tryon.queue(max_size=10).launch()
|