File size: 9,418 Bytes
8bfdef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import base64
import pickle
import re
import uuid

import pandas as pd
import streamlit as st
from CGRtools.files import SMILESRead
from streamlit_ketcher import st_ketcher
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import disable_progress_bars


from synplan.mcts.expansion import PolicyNetworkFunction
from synplan.mcts.search import extract_tree_stats
from synplan.mcts.tree import Tree
from synplan.chem.utils import mol_from_smiles
from synplan.utils.config import TreeConfig, PolicyNetworkConfig
from synplan.utils.loading import load_reaction_rules, load_building_blocks
from synplan.utils.visualisation import generate_results_html, get_route_svg

disable_progress_bars("huggingface_hub")

smiles_parser = SMILESRead.create_parser(ignore=True)


def download_button(object_to_download, download_filename, button_text, pickle_it=False):
    """
    Issued from
    Generates a link to download the given object_to_download.
    Params:
    ------
    object_to_download:  The object to be downloaded.
    download_filename (str): filename and extension of file. e.g. mydata.csv,
    some_txt_output.txt download_link_text (str): Text to display for download
    link.
    button_text (str): Text to display on download button (e.g. 'click here to download file')
    pickle_it (bool): If True, pickle file.
    Returns:
    -------
    (str): the anchor tag to download object_to_download
    Examples:
    --------
    download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
    download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
    """
    if pickle_it:
        try:
            object_to_download = pickle.dumps(object_to_download)
        except pickle.PicklingError as e:
            st.write(e)
            return None

    else:
        if isinstance(object_to_download, bytes):
            pass

        elif isinstance(object_to_download, pd.DataFrame):
            object_to_download = object_to_download.to_csv(index=False).encode('utf-8')

    # Try JSON encode for everything else  # else:  #     object_to_download = json.dumps(object_to_download)

    try:
        # some strings <-> bytes conversions necessary here
        b64 = base64.b64encode(object_to_download.encode()).decode()

    except AttributeError:
        b64 = base64.b64encode(object_to_download).decode()

    button_uuid = str(uuid.uuid4()).replace('-', '')
    button_id = re.sub('\d+', '', button_uuid)

    custom_css = f""" 
        <style>
            #{button_id} {{
                background-color: rgb(255, 255, 255);
                color: rgb(38, 39, 48);
                text-decoration: none;
                border-radius: 4px;
                border-width: 1px;
                border-style: solid;
                border-color: rgb(230, 234, 241);
                border-image: initial;
            }} 
            #{button_id}:hover {{
                border-color: rgb(246, 51, 102);
                color: rgb(246, 51, 102);
            }}
            #{button_id}:active {{
                box-shadow: none;
                background-color: rgb(246, 51, 102);
                color: white;
                }}
        </style> """

    dl_link = custom_css + f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br></br>'

    return dl_link


st.set_page_config(page_title="SynPlanner GUI", page_icon="🧪", layout="wide")

intro_text = '''
This is a demo of the graphical user interface of 
[SynPlanner](https://github.com/Laboratoire-de-Chemoinformatique/SynPlanner/).
SynPlanner is a comprehensive tool for reaction data curation, rule extraction, model training and retrosynthetic planning.

More information on SynPlanner is available in the [official docs](https://synplanner.readthedocs.io/en/latest/index.html).
'''

st.title("`SynPlanner GUI`")

st.write(intro_text)

st.header('Molecule input')
st.markdown(
    '''
    You can provide a molecular structure by either providing:
    * SMILES string + Enter
    * Draw it + Apply
    '''
)

DEFAULT_MOL = 'c1cc(ccc1Cl)C(CCO)NC(C2(CCN(CC2)c3c4cc[nH]c4ncn3)N)=O'
molecule = st.text_input("SMILES:", DEFAULT_MOL)
smile_code = st_ketcher(molecule)
target_molecule = mol_from_smiles(smile_code)

building_blocks_path = hf_hub_download(
        repo_id="Laboratoire-De-Chemoinformatique/SynPlanner",
        filename="building_blocks_em_sa_ln.smi",
        subfolder="building_blocks",
        local_dir="."
    )

ranking_policy_weights_path = hf_hub_download(
        repo_id="Laboratoire-De-Chemoinformatique/SynPlanner",
        filename="ranking_policy_network.ckpt",
        subfolder="uspto/weights",
        local_dir="."
    )

reaction_rules_path = hf_hub_download(
        repo_id="Laboratoire-De-Chemoinformatique/SynPlanner",
        filename="uspto_reaction_rules.pickle",
        subfolder="uspto",
        local_dir="."
    )

st.header('Launch calculation')
st.markdown(
    '''If you modified the structure, please ensure you clicked on `Apply` (bottom right of the molecular editor).'''
)
st.markdown(f"The molecule SMILES is actually: ``{smile_code}``")

st.subheader('Planning options')

st.markdown(
    '''
    The description of each option can be found in the 
    [Retrosynthetic Planning Tutorial](https://synplanner.readthedocs.io/en/latest/tutorial_files/retrosynthetic_planning.html#Configuring-search-tree).
    '''
)

col_options_1, col_options_2 = st.columns(2, gap="medium")

with col_options_1:
    search_strategy_input = st.selectbox(label='Search strategy', options=('Expansion first', 'Evaluation first',), index=0)
    ucb_type = st.selectbox(label='Search strategy', options=('uct', 'puct', 'value'), index=0)
    c_ucb = st.number_input("C coefficient of UCB", value=0.1, placeholder="Type a number...")

with col_options_2:
    max_iterations = st.slider('Total number of MCTS iterations', min_value=50, max_value=300, value=100)
    max_depth = st.slider('Maximal number of reaction steps', min_value=3, max_value=9, value=6)
    min_mol_size = st.slider('Minimum size of a molecule to be precursor', min_value=0, max_value=7, value=0)

search_strategy_translator = {
    "Expansion first": "expansion_first",
    "Evaluation first": "evaluation_first",
}
search_strategy = search_strategy_translator[search_strategy_input]

submit_planning = st.button('Start retrosynthetic planning')

if submit_planning:
    with st.status("Downloading data"):
        st.write("Downloading building blocks")
        building_blocks = load_building_blocks(building_blocks_path, standardize=False)
        st.write('Downloading reaction rules')
        reaction_rules = load_reaction_rules(reaction_rules_path)
        st.write('Loading policy network')
        policy_config = PolicyNetworkConfig(weights_path=ranking_policy_weights_path)
        policy_function = PolicyNetworkFunction(policy_config=policy_config)

    tree_config = TreeConfig(
        search_strategy=search_strategy,
        evaluation_type="rollout",
        max_iterations=max_iterations,
        max_depth=max_depth,
        min_mol_size=min_mol_size,
        init_node_value=0.5,
        ucb_type=ucb_type,
        c_ucb=c_ucb,
        silent=True
    )

    tree = Tree(
        target=target_molecule,
        config=tree_config,
        reaction_rules=reaction_rules,
        building_blocks=building_blocks,
        expansion_function=policy_function,
        evaluation_function=None,
    )

    mcts_progress_text = "Running retrosynthetic planning"
    mcts_bar = st.progress(0, text=mcts_progress_text)
    for step, (solved, node_id) in enumerate(tree):
        mcts_bar.progress(step / max_iterations, text=mcts_progress_text)

    res = extract_tree_stats(tree, target_molecule)

    st.header('Results')
    if res["solved"]:
        st.balloons()

        st.subheader("Examples of found retrosynthetic routes")

        image_counter = 0
        visualised_node_ids = set()
        for n, node_id in enumerate(sorted(set(tree.winning_nodes))):
            if image_counter == 3:
                break
            if n % 2 == 0 and node_id not in visualised_node_ids:
                visualised_node_ids.add(node_id)
                image_counter += 1
                num_steps = len(tree.synthesis_route(node_id))
                route_score = round(tree.route_score(node_id), 3)
                st.image(get_route_svg(tree, node_id), caption=f"Route {node_id}; {num_steps} steps; Route score: {route_score}")

        stat_col, download_col = st.columns(2, gap="medium")

        with stat_col:
            st.subheader("Statistics")
            df = pd.DataFrame(res, index=[0])
            st.write(df[["target_smiles", "num_routes", "num_nodes", "num_iter", "search_time"]])

        with download_col:
            st.subheader("Downloads")
            html_body = generate_results_html(tree, html_path=None, extended=True)
            dl_html = download_button(html_body, 'results_synplanner.html', 'Download results as a HTML file')

            dl_csv = download_button(pd.DataFrame(res, index=[0]), 'results_synplanner.csv',
                                     'Download statistics as a csv file')
            st.markdown(dl_html + dl_csv, unsafe_allow_html=True)

    else:
        st.write("Found no reaction path.")

st.divider()
st.header('Restart from the beginning?')
if st.button("Restart"):
    st.rerun()