File size: 9,418 Bytes
8bfdef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import base64
import pickle
import re
import uuid
import pandas as pd
import streamlit as st
from CGRtools.files import SMILESRead
from streamlit_ketcher import st_ketcher
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import disable_progress_bars
from synplan.mcts.expansion import PolicyNetworkFunction
from synplan.mcts.search import extract_tree_stats
from synplan.mcts.tree import Tree
from synplan.chem.utils import mol_from_smiles
from synplan.utils.config import TreeConfig, PolicyNetworkConfig
from synplan.utils.loading import load_reaction_rules, load_building_blocks
from synplan.utils.visualisation import generate_results_html, get_route_svg
disable_progress_bars("huggingface_hub")
smiles_parser = SMILESRead.create_parser(ignore=True)
def download_button(object_to_download, download_filename, button_text, pickle_it=False):
"""
Issued from
Generates a link to download the given object_to_download.
Params:
------
object_to_download: The object to be downloaded.
download_filename (str): filename and extension of file. e.g. mydata.csv,
some_txt_output.txt download_link_text (str): Text to display for download
link.
button_text (str): Text to display on download button (e.g. 'click here to download file')
pickle_it (bool): If True, pickle file.
Returns:
-------
(str): the anchor tag to download object_to_download
Examples:
--------
download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
"""
if pickle_it:
try:
object_to_download = pickle.dumps(object_to_download)
except pickle.PicklingError as e:
st.write(e)
return None
else:
if isinstance(object_to_download, bytes):
pass
elif isinstance(object_to_download, pd.DataFrame):
object_to_download = object_to_download.to_csv(index=False).encode('utf-8')
# Try JSON encode for everything else # else: # object_to_download = json.dumps(object_to_download)
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError:
b64 = base64.b64encode(object_to_download).decode()
button_uuid = str(uuid.uuid4()).replace('-', '')
button_id = re.sub('\d+', '', button_uuid)
custom_css = f"""
<style>
#{button_id} {{
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
dl_link = custom_css + f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br></br>'
return dl_link
st.set_page_config(page_title="SynPlanner GUI", page_icon="🧪", layout="wide")
intro_text = '''
This is a demo of the graphical user interface of
[SynPlanner](https://github.com/Laboratoire-de-Chemoinformatique/SynPlanner/).
SynPlanner is a comprehensive tool for reaction data curation, rule extraction, model training and retrosynthetic planning.
More information on SynPlanner is available in the [official docs](https://synplanner.readthedocs.io/en/latest/index.html).
'''
st.title("`SynPlanner GUI`")
st.write(intro_text)
st.header('Molecule input')
st.markdown(
'''
You can provide a molecular structure by either providing:
* SMILES string + Enter
* Draw it + Apply
'''
)
DEFAULT_MOL = 'c1cc(ccc1Cl)C(CCO)NC(C2(CCN(CC2)c3c4cc[nH]c4ncn3)N)=O'
molecule = st.text_input("SMILES:", DEFAULT_MOL)
smile_code = st_ketcher(molecule)
target_molecule = mol_from_smiles(smile_code)
building_blocks_path = hf_hub_download(
repo_id="Laboratoire-De-Chemoinformatique/SynPlanner",
filename="building_blocks_em_sa_ln.smi",
subfolder="building_blocks",
local_dir="."
)
ranking_policy_weights_path = hf_hub_download(
repo_id="Laboratoire-De-Chemoinformatique/SynPlanner",
filename="ranking_policy_network.ckpt",
subfolder="uspto/weights",
local_dir="."
)
reaction_rules_path = hf_hub_download(
repo_id="Laboratoire-De-Chemoinformatique/SynPlanner",
filename="uspto_reaction_rules.pickle",
subfolder="uspto",
local_dir="."
)
st.header('Launch calculation')
st.markdown(
'''If you modified the structure, please ensure you clicked on `Apply` (bottom right of the molecular editor).'''
)
st.markdown(f"The molecule SMILES is actually: ``{smile_code}``")
st.subheader('Planning options')
st.markdown(
'''
The description of each option can be found in the
[Retrosynthetic Planning Tutorial](https://synplanner.readthedocs.io/en/latest/tutorial_files/retrosynthetic_planning.html#Configuring-search-tree).
'''
)
col_options_1, col_options_2 = st.columns(2, gap="medium")
with col_options_1:
search_strategy_input = st.selectbox(label='Search strategy', options=('Expansion first', 'Evaluation first',), index=0)
ucb_type = st.selectbox(label='Search strategy', options=('uct', 'puct', 'value'), index=0)
c_ucb = st.number_input("C coefficient of UCB", value=0.1, placeholder="Type a number...")
with col_options_2:
max_iterations = st.slider('Total number of MCTS iterations', min_value=50, max_value=300, value=100)
max_depth = st.slider('Maximal number of reaction steps', min_value=3, max_value=9, value=6)
min_mol_size = st.slider('Minimum size of a molecule to be precursor', min_value=0, max_value=7, value=0)
search_strategy_translator = {
"Expansion first": "expansion_first",
"Evaluation first": "evaluation_first",
}
search_strategy = search_strategy_translator[search_strategy_input]
submit_planning = st.button('Start retrosynthetic planning')
if submit_planning:
with st.status("Downloading data"):
st.write("Downloading building blocks")
building_blocks = load_building_blocks(building_blocks_path, standardize=False)
st.write('Downloading reaction rules')
reaction_rules = load_reaction_rules(reaction_rules_path)
st.write('Loading policy network')
policy_config = PolicyNetworkConfig(weights_path=ranking_policy_weights_path)
policy_function = PolicyNetworkFunction(policy_config=policy_config)
tree_config = TreeConfig(
search_strategy=search_strategy,
evaluation_type="rollout",
max_iterations=max_iterations,
max_depth=max_depth,
min_mol_size=min_mol_size,
init_node_value=0.5,
ucb_type=ucb_type,
c_ucb=c_ucb,
silent=True
)
tree = Tree(
target=target_molecule,
config=tree_config,
reaction_rules=reaction_rules,
building_blocks=building_blocks,
expansion_function=policy_function,
evaluation_function=None,
)
mcts_progress_text = "Running retrosynthetic planning"
mcts_bar = st.progress(0, text=mcts_progress_text)
for step, (solved, node_id) in enumerate(tree):
mcts_bar.progress(step / max_iterations, text=mcts_progress_text)
res = extract_tree_stats(tree, target_molecule)
st.header('Results')
if res["solved"]:
st.balloons()
st.subheader("Examples of found retrosynthetic routes")
image_counter = 0
visualised_node_ids = set()
for n, node_id in enumerate(sorted(set(tree.winning_nodes))):
if image_counter == 3:
break
if n % 2 == 0 and node_id not in visualised_node_ids:
visualised_node_ids.add(node_id)
image_counter += 1
num_steps = len(tree.synthesis_route(node_id))
route_score = round(tree.route_score(node_id), 3)
st.image(get_route_svg(tree, node_id), caption=f"Route {node_id}; {num_steps} steps; Route score: {route_score}")
stat_col, download_col = st.columns(2, gap="medium")
with stat_col:
st.subheader("Statistics")
df = pd.DataFrame(res, index=[0])
st.write(df[["target_smiles", "num_routes", "num_nodes", "num_iter", "search_time"]])
with download_col:
st.subheader("Downloads")
html_body = generate_results_html(tree, html_path=None, extended=True)
dl_html = download_button(html_body, 'results_synplanner.html', 'Download results as a HTML file')
dl_csv = download_button(pd.DataFrame(res, index=[0]), 'results_synplanner.csv',
'Download statistics as a csv file')
st.markdown(dl_html + dl_csv, unsafe_allow_html=True)
else:
st.write("Found no reaction path.")
st.divider()
st.header('Restart from the beginning?')
if st.button("Restart"):
st.rerun()
|