Spaces:
Sleeping
Sleeping
Lamp Socrates
commited on
Commit
·
197e844
1
Parent(s):
7edd56d
latest changes
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import wandb
|
3 |
from transformers import pipeline
|
4 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
|
|
5 |
|
6 |
x = st.slider('Select a value')
|
7 |
st.write(x, 'squared is', x * x)
|
@@ -21,10 +22,26 @@ def load_trained_model():
|
|
21 |
ner_pipeline = pipeline("ner", model=model, tokenizer = tokenizer)
|
22 |
return ner_pipeline
|
23 |
|
24 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
from datasets import load_dataset
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def render_entities(tokens, entities):
|
30 |
"""
|
@@ -66,6 +83,57 @@ def render_entities(tokens, entities):
|
|
66 |
table_data = {"Token": tokens, "Entity": entities}
|
67 |
st.table(table_data)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def prep_page():
|
70 |
model = load_trained_model()
|
71 |
|
@@ -120,6 +188,10 @@ def prep_page():
|
|
120 |
|
121 |
render_entities(text, entities)
|
122 |
|
|
|
|
|
|
|
|
|
123 |
if __name__ == '__main__':
|
124 |
|
125 |
prep_page()
|
|
|
2 |
import wandb
|
3 |
from transformers import pipeline
|
4 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
5 |
+
import pandas as pd
|
6 |
|
7 |
x = st.slider('Select a value')
|
8 |
st.write(x, 'squared is', x * x)
|
|
|
22 |
ner_pipeline = pipeline("ner", model=model, tokenizer = tokenizer)
|
23 |
return ner_pipeline
|
24 |
|
25 |
+
def load_random_examples(dataset_name, num_examples=5):
|
26 |
+
"""
|
27 |
+
Load random examples from the specified Hugging Face dataset.
|
28 |
+
Args:
|
29 |
+
dataset_name (str): The name of the dataset to load.
|
30 |
+
num_examples (int): The number of random examples to load.
|
31 |
+
Returns:
|
32 |
+
pd.DataFrame: A DataFrame containing the random examples.
|
33 |
+
"""
|
34 |
+
# Load the dataset
|
35 |
from datasets import load_dataset
|
36 |
+
dataset = load_dataset("surrey-nlp/PLOD-CW")
|
37 |
+
|
38 |
+
# Convert the dataset to a pandas DataFrame
|
39 |
+
df = pd.DataFrame(dataset['train'])
|
40 |
+
|
41 |
+
# Select random examples
|
42 |
+
random_examples = df.sample(n=num_examples)
|
43 |
+
|
44 |
+
return random_examples
|
45 |
|
46 |
def render_entities(tokens, entities):
|
47 |
"""
|
|
|
83 |
table_data = {"Token": tokens, "Entity": entities}
|
84 |
st.table(table_data)
|
85 |
|
86 |
+
def render_random_examples():
|
87 |
+
"""
|
88 |
+
Render random examples from the PLOD-CW dataset in a Streamlit table.
|
89 |
+
"""
|
90 |
+
# Load random examples
|
91 |
+
random_examples = load_random_examples("surrey-nlp/PLOD-CW")
|
92 |
+
|
93 |
+
|
94 |
+
# Custom CSS for chilled and cool theme
|
95 |
+
st.markdown("""
|
96 |
+
<style>
|
97 |
+
body {
|
98 |
+
font-family: 'Arial', sans-serif;
|
99 |
+
background-color: #f0f0f5;
|
100 |
+
color: #333333;
|
101 |
+
}
|
102 |
+
table {
|
103 |
+
width: 100%;
|
104 |
+
border-collapse: collapse;
|
105 |
+
}
|
106 |
+
th, td {
|
107 |
+
padding: 12px;
|
108 |
+
text-align: left;
|
109 |
+
border-bottom: 1px solid #dddddd;
|
110 |
+
}
|
111 |
+
th {
|
112 |
+
background-color: #4CAF50;
|
113 |
+
color: white;
|
114 |
+
}
|
115 |
+
tr:hover {
|
116 |
+
background-color: #f5f5f5;
|
117 |
+
}
|
118 |
+
</style>
|
119 |
+
""", unsafe_allow_html=True)
|
120 |
+
|
121 |
+
# Title and description
|
122 |
+
st.title("Random Examples from PLOD-CW")
|
123 |
+
st.write("This table shows 5 random examples from the PLOD-CW dataset in a cool and chilled theme.")
|
124 |
+
|
125 |
+
# Add a button to select a different set of random samples
|
126 |
+
if st.button('Show another set of random examples'):
|
127 |
+
st.session_state['random_examples'] = load_random_examples("surrey-nlp/PLOD-CW")
|
128 |
+
|
129 |
+
# Load random examples if not already loaded
|
130 |
+
if 'random_examples' not in st.session_state:
|
131 |
+
st.session_state['random_examples'] = load_random_examples("surrey-nlp/PLOD-CW")
|
132 |
+
|
133 |
+
# Display the table
|
134 |
+
st.table(st.session_state['random_examples'])
|
135 |
+
|
136 |
+
|
137 |
def prep_page():
|
138 |
model = load_trained_model()
|
139 |
|
|
|
188 |
|
189 |
render_entities(text, entities)
|
190 |
|
191 |
+
render_random_examples()
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
if __name__ == '__main__':
|
196 |
|
197 |
prep_page()
|