File size: 6,531 Bytes
4ad296d 4efeb3b 4ad296d 6232477 4efeb3b 6232477 4ad296d 4efeb3b 4ad296d 4efeb3b 4ad296d 4efeb3b 4ad296d 4efeb3b 6232477 4ad296d 6232477 4ad296d 4efeb3b 4ad296d 6232477 4efeb3b 4ad296d 4efeb3b 4ad296d 4efeb3b 6232477 4ad296d 4efeb3b 4ad296d 6232477 4ad296d 6232477 4ad296d 4efeb3b 4ad296d 4efeb3b 4ad296d 6232477 4efeb3b 4ad296d 4efeb3b 4ad296d 4efeb3b 4ad296d 4efeb3b ea7e2bf 4efeb3b ea7e2bf 4efeb3b ea7e2bf 6232477 4ad296d 6232477 4ad296d 6232477 ea7e2bf 4efeb3b ea7e2bf 4efeb3b 6232477 4ad296d b022555 6232477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import uvicorn
import threading
from collections import Counter
from typing import Optional
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
import pandas as pd
#import datasets
from pprint import pprint
import gradio as gr
from transformers import pipeline
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List, Dict
# Define the FastAPI app
app = FastAPI()
model_cache: Optional[object] = None
dataset_cache : Optional[object] = None
def load_model():
""" We load the model at startup"""
tokenizer = AutoTokenizer.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
model = AutoModelForTokenClassification.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
# Mapping labels
id2label = model.config.id2label
# Print the label mapping
print(f"Can recognise the following labels {id2label}")
# Load the NER model and tokenizer from Hugging Face
#ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
model = pipeline("ner", model=model, tokenizer = tokenizer)
return model
def load_plod_cw_dataset():
from datasets import load_dataset
dataset = load_dataset("surrey-nlp/PLOD-CW")
return dataset
def get_cached_data():
global dataset_cache
if dataset_cache is None:
dataset_cache = load_plod_cw_dataset()
return dataset_cache
def get_cached_model():
global model_cache
if model_cache is None:
model_cache = load_model()
return model_cache
# Cache the model when the server starts
model = get_cached_model()
#plod_cw = get_cached_data()
class Entity(BaseModel):
entity: str
score: float
start: int
end: int
word: str
class NERResponse(BaseModel):
entities: List[Entity]
class NERRequest(BaseModel):
text: str
@app.get("/hello")
def read_root():
"""useful for testing connections"""
return {"message": "Hello, World!"}
@app.post("/ner", response_model=NERResponse)
def get_entities(request: NERRequest):
""" This is invoked while API Testing """
print(request)
model = get_cached_model()
# Use the NER model to detect entities
entities = model(request.text)
print(entities[0].keys())
# Convert entities to the response model
response_entities = [Entity(**entity) for entity in entities]
print(response_entities[0])
return NERResponse(entities=response_entities)
def get_color_for_label(label: str) -> str:
# Define a mapping of labels to colors
color_mapping = {
"I-LF": "red",
"B-LF": "pink",
"B-AC": "blue",
"B-O": "green",
# Add more labels and colors as needed
}
return color_mapping.get(label, "black") # Default to black if label not found
# Define the Gradio interface function
def ner_demo(text):
""" This is invoked while rendering the page"""
model = get_cached_model()
entities = model(text)
print("Entities detected {}".format(Counter( [ entity['entity'] for entity in entities])))
all_html = ""
last_index = 0
for entity in entities:
start, end, label = entity["start"], entity["end"], entity["entity"]
color = get_color_for_label(label)
entity_text = text[start:end]
#colored_entity = f'<span style="color: {color}; font-weight: bold;">{entity_text}</span>'
colored_entity = f'<sup style="color: {color}; font-weight: bold;">{entity_text}</sup>'
# Append text before the entity
all_html += text[last_index:start]
# Append the colored entity
all_html += colored_entity
# Update the last_index
last_index = end
# Append the remaining text after the last entity
all_html += text[last_index:]
return all_html
bo_color = get_color_for_label("B-O")
bac_color = get_color_for_label("B-AC")
ilf_color = get_color_for_label("I-LF")
blf_color = get_color_for_label("B-LF")
PROJECT_INTRO = f"""This is a HF Spaces hosted Gradio App built by NLP Group 27. \n\n
The model has been trained on surrey-nlp/PLOD-CW dataset.
The following Entities are recognized:
<sup style="color: {bo_color}; font-weight: bold;">B-O</sup>
<sup style="color: {bac_color}; font-weight: bold;">B-AC</sup>
<sup style="color: {ilf_color}; font-weight: bold;">I-LF</sup>
<sup style="color: {blf_color}; font-weight: bold;">B-LF</sup>
<sup style="color: black; font-weight: bold;">Rest</sup>
"""
def echo(text, request: gr.Request):
res = '<div>'
if request:
res += f"Request headers dictionary: {request.headers} <p>"
res += f"IP address: {request.client.host} <p>"
res += f"Query parameters: {dict(request.query_params)} <p>"
res += "</div>"
return res
def sample_data(text):
text = "The red dots represents LCI , the bright yellow rectangle represents RV , and the black triangle represents the /TLCnLCI"
#dat = get_cached_data()
#df = dat['test']['tokens'].sample(5)
data = {
"Text": [text],
"Length": [len(text)]
}
df = pd.DataFrame(data)
return df
# Create the Gradio interface
demo = gr.Interface(
fn=ner_demo,
inputs=gr.Textbox(lines=10, placeholder="Enter text here..."),
outputs="html",
#outputs=gr.JSON(),
title="Named Entity Recognition on PLOD-CW ",
description=f"{PROJECT_INTRO}\n\nEnter text to extract named entities using a NER model."
)
with gr.Blocks() as demo:
gr.Markdown("# Named Entity Recognition on PLOD-CW")
gr.Markdown(PROJECT_INTRO)
gr.Markdown("### Enter text to extract named entities using a NER model.")
text_input = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")
html_output = gr.HTML(label="HTML Output")
with gr.Row():
submit_button = gr.Button("Submit")
echo_button = gr.Button("Echo Client")
sample_button = gr.Button("Sample PLOD_CW")
sample_output = gr.Dataframe(label="Sample Table")
echo_output = gr.HTML(label="HTML Output")
submit_button.click(ner_demo, inputs=text_input, outputs=html_output)
echo_button.click(echo, inputs=text_input, outputs=echo_output)
sample_button.click(sample_data, inputs=text_input, outputs=sample_output)
# Function to run Gradio
demo.launch(server_name="0.0.0.0", server_port=7860)
|