Lamp Socrates
Latest commit
4ad296d
raw
history blame
3.9 kB
import uvicorn
import threading
from typing import Optional
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
import pandas as pd
#import datasets
from pprint import pprint
import gradio as gr
from transformers import pipeline
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List, Dict
# Define the FastAPI app
app = FastAPI()
model_cache: Optional[object] = None
def load_model():
tokenizer = AutoTokenizer.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
model = AutoModelForTokenClassification.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
# Mapping labels
id2label = model.config.id2label
# Print the label mapping
print(f"Can recognise the following labels {id2label}")
# Load the NER model and tokenizer from Hugging Face
#ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
model = pipeline("ner", model=model, tokenizer = tokenizer)
return model
def load_plod_cw_dataset():
from datasets import load_dataset
dataset = load_dataset("surrey-nlp/PLOD-CW")
return dataset
def get_cached_model():
global model_cache
if model_cache is None:
model_cache = load_model()
return model_cache
# Cache the model when the server starts
model = get_cached_model()
class Entity(BaseModel):
entity: str
score: float
start: int
end: int
word: str
class NERResponse(BaseModel):
entities: List[Entity]
class NERRequest(BaseModel):
text: str
@app.get("/hello")
def read_root():
return {"message": "Hello, World!"}
@app.post("/ner", response_model=NERResponse)
def get_entities(request: NERRequest):
print(request)
model = get_cached_model()
# Use the NER model to detect entities
entities = model(request.text)
print(entities[0].keys())
# Convert entities to the response model
response_entities = [Entity(**entity) for entity in entities]
print(response_entities[0])
return NERResponse(entities=response_entities)
def get_color_for_label(label: str) -> str:
# Define a mapping of labels to colors
color_mapping = {
"I-LF": "red",
"B-AC": "blue",
"LOC": "green",
# Add more labels and colors as needed
}
return color_mapping.get(label, "black") # Default to black if label not found
# Define the Gradio interface function
def ner_demo(text):
model = get_cached_model()
entities = model(text)
#return {"entities": entities}
# Color code the entities
color_coded_text = text
for entity in entities:
#print(entity)
start, end, label = entity["start"], entity["end"], entity["entity"]
color = get_color_for_label(label) # You need to define this function
entity_text = text[start:end]
colored_entity = f'<span style="color: {color}; font-weight: bold;">{entity_text}</span>'
color_coded_text = color_coded_text[:start] + colored_entity + color_coded_text[end:]
return color_coded_text
PROJECT_INTRO = "This is a HF Spaces hosted Gradio App built by NLP Group 27 . The model has been trained on surrey-nlp/PLOD-CW dataset"
# Create the Gradio interface
demo = gr.Interface(
fn=ner_demo,
inputs=gr.Textbox(lines=10, placeholder="Enter text here..."),
outputs="html",
#outputs=gr.JSON(),
title="Named Entity Recognition on PLOD-CW ",
description=f"{PROJECT_INTRO}\n\nEnter text to extract named entities using a NER model."
)
# Function to run FastAPI
def run_fastapi():
uvicorn.run(app, host="0.0.0.0", port=8000)
# Function to run Gradio
def run_gradio():
demo.launch(server_name="0.0.0.0", server_port=7860)
# Run both servers in separate threads
threading.Thread(target=run_fastapi).start()
threading.Thread(target=run_gradio).start()