Lamp Socrates
commited on
Commit
Β·
0f52168
1
Parent(s):
aed0940
Initial commit
Browse files- README.md +11 -4
- app.py +230 -0
- requirements.txt +31 -0
README.md
CHANGED
@@ -1,13 +1,20 @@
|
|
1 |
---
|
2 |
-
title: Hf Streamlit
|
3 |
emoji: π
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
|
|
11 |
---
|
12 |
|
|
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Hf Streamlit Cw Group27
|
3 |
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.34.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
python_version: 3.11.5
|
12 |
+
short_description: Sample space for group coursework for NLP
|
13 |
---
|
14 |
|
15 |
+
|
16 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
17 |
+
|
18 |
+
|
19 |
+
## Setting up Github Actions
|
20 |
+
https://huggingface.co/docs/hub/en/spaces-github-actions
|
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
+
import pandas as pd
|
5 |
+
from pprint import pprint
|
6 |
+
|
7 |
+
|
8 |
+
@st.cache_resource()
|
9 |
+
def load_trained_model():
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
|
12 |
+
model = AutoModelForTokenClassification.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
|
13 |
+
# Mapping labels
|
14 |
+
id2label = model.config.id2label
|
15 |
+
# Print the label mapping
|
16 |
+
print(f"Can recognise the following labels {id2label}")
|
17 |
+
|
18 |
+
# Load the NER model and tokenizer from Hugging Face
|
19 |
+
#ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
|
20 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer = tokenizer)
|
21 |
+
return ner_pipeline
|
22 |
+
|
23 |
+
|
24 |
+
@st.cache_data()
|
25 |
+
def load_plod_cw_dataset():
|
26 |
+
from datasets import load_dataset
|
27 |
+
dataset = load_dataset("surrey-nlp/PLOD-CW")
|
28 |
+
return dataset
|
29 |
+
|
30 |
+
def load_random_examples(dataset_name, num_examples=5):
|
31 |
+
"""
|
32 |
+
Load random examples from the specified Hugging Face dataset.
|
33 |
+
Args:
|
34 |
+
dataset_name (str): The name of the dataset to load.
|
35 |
+
num_examples (int): The number of random examples to load.
|
36 |
+
Returns:
|
37 |
+
pd.DataFrame: A DataFrame containing the random examples.
|
38 |
+
"""
|
39 |
+
# Load the dataset
|
40 |
+
|
41 |
+
dat = load_plod_cw_dataset()
|
42 |
+
|
43 |
+
# Convert the dataset to a pandas DataFrame
|
44 |
+
df = pd.DataFrame(dat['test'])
|
45 |
+
|
46 |
+
# Select random examples
|
47 |
+
random_examples = df.sample(n=1)
|
48 |
+
|
49 |
+
tokens = random_examples.tokens
|
50 |
+
ner_tags = random_examples.ner_tags
|
51 |
+
|
52 |
+
return pd.DataFrame((tokens, ner_tags))
|
53 |
+
|
54 |
+
|
55 |
+
def render_entities(tokens, entities):
|
56 |
+
"""
|
57 |
+
Renders a page with a 2-column table showing the entity corresponding to each token.
|
58 |
+
"""
|
59 |
+
|
60 |
+
# Custom CSS for chilled and cool theme
|
61 |
+
st.markdown("""
|
62 |
+
<style>
|
63 |
+
body {
|
64 |
+
font-family: 'Arial', sans-serif;
|
65 |
+
background-color: #f0f0f5;
|
66 |
+
color: #333333;
|
67 |
+
}
|
68 |
+
table {
|
69 |
+
width: 100%;
|
70 |
+
border-collapse: collapse;
|
71 |
+
}
|
72 |
+
th, td {
|
73 |
+
padding: 12px;
|
74 |
+
text-align: left;
|
75 |
+
border-bottom: 1px solid #dddddd;
|
76 |
+
}
|
77 |
+
th {
|
78 |
+
background-color: #4CAF50;
|
79 |
+
color: white;
|
80 |
+
width: 16.66%;
|
81 |
+
}
|
82 |
+
tr:hover {
|
83 |
+
background-color: #f5f5f5;
|
84 |
+
}
|
85 |
+
td {
|
86 |
+
width: 16.66%;
|
87 |
+
}
|
88 |
+
</style>
|
89 |
+
""", unsafe_allow_html=True)
|
90 |
+
|
91 |
+
# Title and description
|
92 |
+
st.title("Model predicted Token vs Entities Table")
|
93 |
+
st.write("This table shows the entity corresponding to each token in a cool and chilled theme.")
|
94 |
+
|
95 |
+
# Create the table
|
96 |
+
table_data = {"Token": tokens, "Entity": entities}
|
97 |
+
st.table(table_data)
|
98 |
+
|
99 |
+
def render_random_examples():
|
100 |
+
"""
|
101 |
+
Render random examples from the PLOD-CW dataset in a Streamlit table.
|
102 |
+
"""
|
103 |
+
# Load random examples
|
104 |
+
|
105 |
+
# Custom CSS for chilled and cool theme
|
106 |
+
st.markdown("""
|
107 |
+
<style>
|
108 |
+
body {
|
109 |
+
font-family: 'Arial', sans-serif;
|
110 |
+
background-color: #f0f0f5;
|
111 |
+
color: #333333;
|
112 |
+
}
|
113 |
+
table {
|
114 |
+
width: 100%;
|
115 |
+
border-collapse: collapse;
|
116 |
+
}
|
117 |
+
th, td {
|
118 |
+
padding: 12px;
|
119 |
+
text-align: left;
|
120 |
+
border-bottom: 1px solid #dddddd;
|
121 |
+
}
|
122 |
+
th {
|
123 |
+
background-color: #4CAF50;
|
124 |
+
color: white;
|
125 |
+
width: 16.66%;
|
126 |
+
}
|
127 |
+
tr:hover {
|
128 |
+
background-color: #f5f5f5;
|
129 |
+
}
|
130 |
+
td {
|
131 |
+
width: 16.66%;
|
132 |
+
}
|
133 |
+
</style>
|
134 |
+
""", unsafe_allow_html=True)
|
135 |
+
|
136 |
+
# Title and description
|
137 |
+
st.title("Random Examples from PLOD-CW")
|
138 |
+
st.write("This table shows 1 random examples from the PLOD-CW dataset in a cool and chilled theme.")
|
139 |
+
|
140 |
+
# Add a button to select a different set of random samples
|
141 |
+
if st.button('Show another set of random examples'):
|
142 |
+
st.session_state['random_examples'] = load_random_examples("surrey-nlp/PLOD-CW")
|
143 |
+
|
144 |
+
# Load random examples if not already loaded
|
145 |
+
if 'random_examples' not in st.session_state:
|
146 |
+
st.session_state['random_examples'] = load_random_examples("surrey-nlp/PLOD-CW")
|
147 |
+
|
148 |
+
# Display the table
|
149 |
+
st.table(st.session_state['random_examples'])
|
150 |
+
def predict_using_trained(sentence):
|
151 |
+
model = load_trained_model()
|
152 |
+
|
153 |
+
entities = model(sentence)
|
154 |
+
|
155 |
+
return entities
|
156 |
+
|
157 |
+
def prep_page():
|
158 |
+
model = load_trained_model()
|
159 |
+
|
160 |
+
# Streamlit app
|
161 |
+
# Page configuration
|
162 |
+
#st.set_page_config(page_title="NER Token Entities", layout="centered")
|
163 |
+
|
164 |
+
st.title("Named Entity Recognition with BERT on PLOD-CW")
|
165 |
+
st.write("Enter a sentence to see the named entities recognized by the model.")
|
166 |
+
|
167 |
+
# Text input
|
168 |
+
text = st.text_area("Enter your sentence here:")
|
169 |
+
|
170 |
+
# Perform NER and display results
|
171 |
+
if text:
|
172 |
+
st.write("Entities recognized:")
|
173 |
+
entities = model(text)
|
174 |
+
|
175 |
+
pprint(entities)
|
176 |
+
|
177 |
+
# Create a dictionary to map entity labels to colors
|
178 |
+
label_colors = {
|
179 |
+
'B-LF': 'lightblue',
|
180 |
+
'B-O': 'lightgreen',
|
181 |
+
'B-AC': 'lightcoral',
|
182 |
+
'I-LF': 'lightyellow'
|
183 |
+
}
|
184 |
+
|
185 |
+
# Prepare the HTML output with styled entities
|
186 |
+
def get_entity_html(text, entities):
|
187 |
+
html = "<div>"
|
188 |
+
last_idx = 0
|
189 |
+
for entity in entities:
|
190 |
+
start = entity['start']
|
191 |
+
end = entity['end']
|
192 |
+
label = entity['entity']
|
193 |
+
entity_text = text[start:end]
|
194 |
+
color = label_colors.get(label, 'lightgray')
|
195 |
+
|
196 |
+
# Append the text before the entity
|
197 |
+
html += text[last_idx:start].replace(" ", "<br>")
|
198 |
+
# Append the entity with styling
|
199 |
+
html += f'<div style="background-color: {color}; padding: 5px; border-radius: 3px; margin: 5px 0;">{entity_text}</div>'
|
200 |
+
last_idx = end
|
201 |
+
|
202 |
+
# Append any remaining text after the last entity
|
203 |
+
html += text[last_idx:].replace(" ", "<br>")
|
204 |
+
html += "</div>"
|
205 |
+
return html
|
206 |
+
|
207 |
+
# Generate and display the styled HTML
|
208 |
+
styled_text = get_entity_html(text, entities)
|
209 |
+
|
210 |
+
st.markdown(styled_text, unsafe_allow_html=True)
|
211 |
+
|
212 |
+
render_entities(text, entities)
|
213 |
+
|
214 |
+
render_random_examples()
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
if __name__ == '__main__':
|
219 |
+
|
220 |
+
query_params = st.query_params
|
221 |
+
if 'api' in query_params:
|
222 |
+
sentence = query_params.get('sentence')
|
223 |
+
entities = predict_using_trained(sentence)
|
224 |
+
response = {"sentence" : sentence , "entities" : entities}
|
225 |
+
pprint(response)
|
226 |
+
|
227 |
+
st.write(response)
|
228 |
+
else:
|
229 |
+
prep_page()
|
230 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.2.0
|
2 |
+
tensorflow==2.15.0
|
3 |
+
datasets==2.18.0
|
4 |
+
torchtext==0.17.0
|
5 |
+
torchvision==0.17.0
|
6 |
+
torchsummary==1.5.1
|
7 |
+
accelerate==0.26.0
|
8 |
+
gensim==4.3.2
|
9 |
+
transformers==4.39.3
|
10 |
+
pynvml==11.5.0
|
11 |
+
seqeval==1.2.2
|
12 |
+
triton==2.2.0
|
13 |
+
jupyter==1.0.0
|
14 |
+
jupyterlab-git==0.50.0
|
15 |
+
urllib3<2
|
16 |
+
scikit-learn
|
17 |
+
scipy==1.10.1
|
18 |
+
numpy
|
19 |
+
fastai==2.7.14
|
20 |
+
timm==0.9.12
|
21 |
+
tensorboard
|
22 |
+
albumentations==1.4.3
|
23 |
+
seaborn
|
24 |
+
tqdm==4.66.2
|
25 |
+
nbdime
|
26 |
+
matplotlib
|
27 |
+
opencv-python
|
28 |
+
Keras-Preprocessing==1.1.2
|
29 |
+
flask==2.1.0
|
30 |
+
Werkzeug==2.2.2
|
31 |
+
wandb==0.17.0
|