Spaces:
Runtime error
Runtime error
File size: 8,967 Bytes
bab971b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
"""Calculates the CLIP Scores
The CLIP model is a contrasitively learned language-image model. There is
an image encoder and a text encoder. It is believed that the CLIP model could
measure the similarity of cross modalities. Please find more information from
https://github.com/openai/CLIP.
The CLIP Score measures the Cosine Similarity between two embedded features.
This repository utilizes the pretrained CLIP Model to calculate
the mean average of cosine similarities.
See --help to see further details.
Code apapted from https://github.com/mseitzer/pytorch-fid and https://github.com/openai/CLIP.
Copyright 2023 The Hong Kong Polytechnic University
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import os.path as osp
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, Subset
from decord import VideoReader, cpu
import random
from pytorchvideo.transforms import ShortSideScale
from torchvision.io import read_video
from torchvision.transforms import Lambda, Compose
from torchvision.transforms._transforms_video import CenterCropVideo
import sys
sys.path.append(".")
from opensora.eval.cal_lpips import calculate_lpips
from opensora.eval.cal_fvd import calculate_fvd
from opensora.eval.cal_psnr import calculate_psnr
from opensora.eval.cal_flolpips import calculate_flolpips
from opensora.eval.cal_ssim import calculate_ssim
try:
from tqdm import tqdm
except ImportError:
# If tqdm is not available, provide a mock version of it
def tqdm(x):
return x
class VideoDataset(Dataset):
def __init__(self,
real_video_dir,
generated_video_dir,
num_frames,
sample_rate = 1,
crop_size=None,
resolution=128,
) -> None:
super().__init__()
self.real_video_files = self._combine_without_prefix(real_video_dir)
self.generated_video_files = self._combine_without_prefix(generated_video_dir)
self.num_frames = num_frames
self.sample_rate = sample_rate
self.crop_size = crop_size
self.short_size = resolution
def __len__(self):
return len(self.real_video_files)
def __getitem__(self, index):
if index >= len(self):
raise IndexError
real_video_file = self.real_video_files[index]
generated_video_file = self.generated_video_files[index]
print(real_video_file, generated_video_file)
real_video_tensor = self._load_video(real_video_file)
generated_video_tensor = self._load_video(generated_video_file)
return {'real': real_video_tensor, 'generated':generated_video_tensor }
def _load_video(self, video_path):
num_frames = self.num_frames
sample_rate = self.sample_rate
decord_vr = VideoReader(video_path, ctx=cpu(0))
total_frames = len(decord_vr)
sample_frames_len = sample_rate * num_frames
if total_frames >= sample_frames_len:
s = 0
e = s + sample_frames_len
num_frames = num_frames
else:
s = 0
e = total_frames
num_frames = int(total_frames / sample_frames_len * num_frames)
print(f'sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}', video_path,
total_frames)
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
video_data = torch.from_numpy(video_data)
video_data = video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (C, T, H, W)
return _preprocess(video_data, short_size=self.short_size, crop_size = self.crop_size)
def _combine_without_prefix(self, folder_path, prefix='.'):
folder = []
os.makedirs(folder_path, exist_ok=True)
for name in os.listdir(folder_path):
if name[0] == prefix:
continue
if osp.isfile(osp.join(folder_path, name)):
folder.append(osp.join(folder_path, name))
folder.sort()
return folder
def _preprocess(video_data, short_size=128, crop_size=None):
transform = Compose(
[
Lambda(lambda x: x / 255.0),
ShortSideScale(size=short_size),
CenterCropVideo(crop_size=crop_size),
]
)
video_outputs = transform(video_data)
# video_outputs = torch.unsqueeze(video_outputs, 0) # (bz,c,t,h,w)
return video_outputs
def calculate_common_metric(args, dataloader, device):
score_list = []
for batch_data in tqdm(dataloader): # {'real': real_video_tensor, 'generated':generated_video_tensor }
real_videos = batch_data['real']
generated_videos = batch_data['generated']
assert real_videos.shape[2] == generated_videos.shape[2]
if args.metric == 'fvd':
tmp_list = list(calculate_fvd(real_videos, generated_videos, args.device, method=args.fvd_method)['value'].values())
elif args.metric == 'ssim':
tmp_list = list(calculate_ssim(real_videos, generated_videos)['value'].values())
elif args.metric == 'psnr':
tmp_list = list(calculate_psnr(real_videos, generated_videos)['value'].values())
elif args.metric == 'flolpips':
result = calculate_flolpips(real_videos, generated_videos, args.device)
tmp_list = list(result['value'].values())
else:
tmp_list = list(calculate_lpips(real_videos, generated_videos, args.device)['value'].values())
score_list += tmp_list
return np.mean(score_list)
def main():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', type=int, default=2,
help='Batch size to use')
parser.add_argument('--real_video_dir', type=str,
help=('the path of real videos`'))
parser.add_argument('--generated_video_dir', type=str,
help=('the path of generated videos`'))
parser.add_argument('--device', type=str, default=None,
help='Device to use. Like cuda, cuda:0 or cpu')
parser.add_argument('--num_workers', type=int, default=8,
help=('Number of processes to use for data loading. '
'Defaults to `min(8, num_cpus)`'))
parser.add_argument('--sample_fps', type=int, default=30)
parser.add_argument('--resolution', type=int, default=336)
parser.add_argument('--crop_size', type=int, default=None)
parser.add_argument('--num_frames', type=int, default=100)
parser.add_argument('--sample_rate', type=int, default=1)
parser.add_argument('--subset_size', type=int, default=None)
parser.add_argument("--metric", type=str, default="fvd",choices=['fvd','psnr','ssim','lpips', 'flolpips'])
parser.add_argument("--fvd_method", type=str, default='styleganv',choices=['styleganv','videogpt'])
args = parser.parse_args()
if args.device is None:
device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu')
else:
device = torch.device(args.device)
if args.num_workers is None:
try:
num_cpus = len(os.sched_getaffinity(0))
except AttributeError:
# os.sched_getaffinity is not available under Windows, use
# os.cpu_count instead (which may not return the *available* number
# of CPUs).
num_cpus = os.cpu_count()
num_workers = min(num_cpus, 8) if num_cpus is not None else 0
else:
num_workers = args.num_workers
dataset = VideoDataset(args.real_video_dir,
args.generated_video_dir,
num_frames = args.num_frames,
sample_rate = args.sample_rate,
crop_size=args.crop_size,
resolution=args.resolution)
if args.subset_size:
indices = range(args.subset_size)
dataset = Subset(dataset, indices=indices)
dataloader = DataLoader(dataset, args.batch_size,
num_workers=num_workers, pin_memory=True)
metric_score = calculate_common_metric(args, dataloader,device)
print('metric: ', args.metric, " ",metric_score)
if __name__ == '__main__':
main()
|