File size: 8,261 Bytes
bab971b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import math
import os
import torch
import argparse
import torchvision

from diffusers.schedulers import (DDIMScheduler, DDPMScheduler, PNDMScheduler,
                                  EulerDiscreteScheduler, DPMSolverMultistepScheduler,
                                  HeunDiscreteScheduler, EulerAncestralDiscreteScheduler,
                                  DEISMultistepScheduler, KDPM2AncestralDiscreteScheduler)
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder
from omegaconf import OmegaConf
from torchvision.utils import save_image
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer

import os, sys

from opensora.models.ae import ae_stride_config, getae, getae_wrapper
from opensora.models.ae.videobase import CausalVQVAEModelWrapper, CausalVAEModelWrapper
from opensora.models.diffusion.latte.modeling_latte import LatteT2V
from opensora.models.text_encoder import get_text_enc
from opensora.utils.utils import save_video_grid

sys.path.append(os.path.split(sys.path[0])[0])
from pipeline_videogen import VideoGenPipeline

import imageio


def main(args):
    # torch.manual_seed(args.seed) 
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"

    vae = getae_wrapper(args.ae)(args.model_path, subfolder="vae", cache_dir=args.cache_dir).to(device, dtype=torch.float16)
    # vae = getae_wrapper(args.ae)(args.ae_path).to(device, dtype=torch.float16)
    if args.enable_tiling:
        vae.vae.enable_tiling()
        vae.vae.tile_overlap_factor = args.tile_overlap_factor
    vae.vae_scale_factor = ae_stride_config[args.ae]
    # Load model:
    transformer_model = LatteT2V.from_pretrained(args.model_path, subfolder=args.version, cache_dir=args.cache_dir, torch_dtype=torch.float16).to(device)
    # transformer_model = LatteT2V.from_pretrained(args.model_path, low_cpu_mem_usage=False, device_map=None, torch_dtype=torch.float16).to(device)
    
    transformer_model.force_images = args.force_images
    tokenizer = T5Tokenizer.from_pretrained(args.text_encoder_name, cache_dir=args.cache_dir)
    text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_name, cache_dir=args.cache_dir, torch_dtype=torch.float16).to(device)

    if args.force_images:
        ext = 'jpg'
    else:
        ext = 'mp4'

    # set eval mode
    transformer_model.eval()
    vae.eval()
    text_encoder.eval()

    if args.sample_method == 'DDIM':  #########
        scheduler = DDIMScheduler()
    elif args.sample_method == 'EulerDiscrete':
        scheduler = EulerDiscreteScheduler()
    elif args.sample_method == 'DDPM':  #############
        scheduler = DDPMScheduler()
    elif args.sample_method == 'DPMSolverMultistep':
        scheduler = DPMSolverMultistepScheduler()
    elif args.sample_method == 'DPMSolverSinglestep':
        scheduler = DPMSolverSinglestepScheduler()
    elif args.sample_method == 'PNDM':
        scheduler = PNDMScheduler()
    elif args.sample_method == 'HeunDiscrete':  ########
        scheduler = HeunDiscreteScheduler()
    elif args.sample_method == 'EulerAncestralDiscrete':
        scheduler = EulerAncestralDiscreteScheduler()
    elif args.sample_method == 'DEISMultistep':
        scheduler = DEISMultistepScheduler()
    elif args.sample_method == 'KDPM2AncestralDiscrete':  #########
        scheduler = KDPM2AncestralDiscreteScheduler()
    print('videogen_pipeline', device)
    videogen_pipeline = VideoGenPipeline(vae=vae,
                                         text_encoder=text_encoder,
                                         tokenizer=tokenizer,
                                         scheduler=scheduler,
                                         transformer=transformer_model).to(device=device)
    # videogen_pipeline.enable_xformers_memory_efficient_attention()

    if not os.path.exists(args.save_img_path):
        os.makedirs(args.save_img_path)

    video_grids = []
    if not isinstance(args.text_prompt, list):
        args.text_prompt = [args.text_prompt]
    if len(args.text_prompt) == 1 and args.text_prompt[0].endswith('txt'):
        text_prompt = open(args.text_prompt[0], 'r').readlines()
        args.text_prompt = [i.strip() for i in text_prompt]
    for prompt in args.text_prompt:
        print('Processing the ({}) prompt'.format(prompt))
        videos = videogen_pipeline(prompt,
                                   num_frames=args.num_frames,
                                   height=args.height,
                                   width=args.width,
                                   num_inference_steps=args.num_sampling_steps,
                                   guidance_scale=args.guidance_scale,
                                   enable_temporal_attentions=not args.force_images,
                                   num_images_per_prompt=1,
                                   mask_feature=True,
                                   ).video
        print(videos.shape)
        try:
            if args.force_images:
                videos = videos[:, 0].permute(0, 3, 1, 2)  # b t h w c -> b c h w
                save_image(videos / 255.0, os.path.join(args.save_img_path,
                                                     prompt.replace(' ', '_')[:100] + f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'),
                           nrow=1, normalize=True, value_range=(0, 1))  # t c h w

            else:
                imageio.mimwrite(
                    os.path.join(
                        args.save_img_path,
                        prompt.replace(' ', '_')[:100] + f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'
                    ), videos[0],
                    fps=args.fps, quality=9)  # highest quality is 10, lowest is 0
        except:
            print('Error when saving {}'.format(prompt))
        video_grids.append(videos)
    video_grids = torch.cat(video_grids, dim=0)


    # torchvision.io.write_video(args.save_img_path + '_%04d' % args.run_time + '-.mp4', video_grids, fps=6)
    if args.force_images:
        save_image(video_grids / 255.0, os.path.join(args.save_img_path, f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'),
                   nrow=math.ceil(math.sqrt(len(video_grids))), normalize=True, value_range=(0, 1))
    else:
        video_grids = save_video_grid(video_grids)
        imageio.mimwrite(os.path.join(args.save_img_path, f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'), video_grids, fps=args.fps, quality=9)

    print('save path {}'.format(args.save_img_path))

    # save_videos_grid(video, f"./{prompt}.gif")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", type=str, default='LanguageBind/Open-Sora-Plan-v1.0.0')
    parser.add_argument("--version", type=str, default=None, choices=[None, '65x512x512', '221x512x512', '513x512x512'])
    parser.add_argument("--num_frames", type=int, default=1)
    parser.add_argument("--height", type=int, default=512)
    parser.add_argument("--width", type=int, default=512)
    parser.add_argument("--cache_dir", type=str, default='./cache_dir')
    parser.add_argument("--ae", type=str, default='CausalVAEModel_4x8x8')
    parser.add_argument("--ae_path", type=str, default='CausalVAEModel_4x8x8')
    parser.add_argument("--text_encoder_name", type=str, default='DeepFloyd/t5-v1_1-xxl')
    parser.add_argument("--save_img_path", type=str, default="./sample_videos/t2v")
    parser.add_argument("--guidance_scale", type=float, default=7.5)
    parser.add_argument("--sample_method", type=str, default="PNDM")
    parser.add_argument("--num_sampling_steps", type=int, default=50)
    parser.add_argument("--fps", type=int, default=24)
    parser.add_argument("--run_time", type=int, default=0)
    parser.add_argument("--text_prompt", nargs='+')
    parser.add_argument('--force_images', action='store_true')
    parser.add_argument('--tile_overlap_factor', type=float, default=0.25)
    parser.add_argument('--enable_tiling', action='store_true')
    args = parser.parse_args()

    main(args)