File size: 17,477 Bytes
bab971b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import os

import torch

import os
import math
import torch
import logging
import random
import subprocess
import numpy as np
import torch.distributed as dist

# from torch._six import inf
from torch import inf
from PIL import Image
from typing import Union, Iterable
from collections import OrderedDict
from torch.utils.tensorboard import SummaryWriter

from diffusers.utils import is_bs4_available, is_ftfy_available

import html
import re
import urllib.parse as ul

if is_bs4_available():
    from bs4 import BeautifulSoup

if is_ftfy_available():
    import ftfy

_tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]]

def find_model(model_name):
    """
    Finds a pre-trained Latte model, downloading it if necessary. Alternatively, loads a model from a local path.
    """
    assert os.path.isfile(model_name), f'Could not find Latte checkpoint at {model_name}'
    checkpoint = torch.load(model_name, map_location=lambda storage, loc: storage)

    # if "ema" in checkpoint:  # supports checkpoints from train.py
    #     print('Using Ema!')
    #     checkpoint = checkpoint["ema"]
    # else:
    print('Using model!')
    checkpoint = checkpoint['model']
    return checkpoint

#################################################################################
#                             Training Clip Gradients                           #
#################################################################################
import deepspeed
def print_grad_norm(model):
    # 计算并打印梯度范数
    # model_engine = accelerator.deepspeed_engine_wrapped.engine
    # gradients = model_engine.get_gradients()
    # grad_norm = get_grad_norm(gradients)
    # 计算并打印梯度范数
    grad_norm = 0
    n_grad = 0
    for name, param in model.named_parameters():
        grad_data = deepspeed.utils.safe_get_full_grad(param)
        # self.print_tensor_stats(grad_data, name=name)

        if grad_data is not None:
            param_norm = grad_data.norm(2)
            grad_norm += param_norm.item() ** 2
            n_grad += 1
    grad_norm = (grad_norm / n_grad) ** (1. / 2)

    # self.print_msg('=' * 50)
    print(f'Gradient Norm is : {grad_norm}')

def get_grad_norm(
        parameters: _tensor_or_tensors, norm_type: float = 2.0) -> torch.Tensor:
    r"""
    Copy from torch.nn.utils.clip_grad_norm_

    Clips gradient norm of an iterable of parameters.

    The norm is computed over all gradients together, as if they were
    concatenated into a single vector. Gradients are modified in-place.

    Args:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
        error_if_nonfinite (bool): if True, an error is thrown if the total
            norm of the gradients from :attr:`parameters` is ``nan``,
            ``inf``, or ``-inf``. Default: False (will switch to True in the future)

    Returns:
        Total norm of the parameter gradients (viewed as a single vector).
    """
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    grads = [p.grad for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(grads) == 0:
        return torch.tensor(0.)
    device = grads[0].device
    if norm_type == inf:
        norms = [g.detach().abs().max().to(device) for g in grads]
        total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
    else:
        total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
    return total_norm


def clip_grad_norm_(
        parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0,
        error_if_nonfinite: bool = False, clip_grad=True) -> torch.Tensor:
    r"""
    Copy from torch.nn.utils.clip_grad_norm_

    Clips gradient norm of an iterable of parameters.

    The norm is computed over all gradients together, as if they were
    concatenated into a single vector. Gradients are modified in-place.

    Args:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
        error_if_nonfinite (bool): if True, an error is thrown if the total
            norm of the gradients from :attr:`parameters` is ``nan``,
            ``inf``, or ``-inf``. Default: False (will switch to True in the future)

    Returns:
        Total norm of the parameter gradients (viewed as a single vector).
    """
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    grads = [p.grad for p in parameters if p.grad is not None]
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    if len(grads) == 0:
        return torch.tensor(0.)
    device = grads[0].device
    if norm_type == inf:
        norms = [g.detach().abs().max().to(device) for g in grads]
        total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
    else:
        total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)

    if clip_grad:
        if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()):
            raise RuntimeError(
                f'The total norm of order {norm_type} for gradients from '
                '`parameters` is non-finite, so it cannot be clipped. To disable '
                'this error and scale the gradients by the non-finite norm anyway, '
                'set `error_if_nonfinite=False`')
        clip_coef = max_norm / (total_norm + 1e-6)
        # Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so
        # avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization
        # when the gradients do not reside in CPU memory.
        clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
        for g in grads:
            g.detach().mul_(clip_coef_clamped.to(g.device))
        # gradient_cliped = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
        # print(gradient_cliped)
    return total_norm


def get_experiment_dir(root_dir, args):
    # if args.pretrained is not None and 'Latte-XL-2-256x256.pt' not in args.pretrained:
    #     root_dir += '-WOPRE'
    if args.use_compile:
        root_dir += '-Compile'  # speedup by torch compile
    if args.attention_mode:
        root_dir += f'-{args.attention_mode.upper()}'
    # if args.enable_xformers_memory_efficient_attention:
    #     root_dir += '-Xfor'
    if args.gradient_checkpointing:
        root_dir += '-Gc'
    if args.mixed_precision:
        root_dir += f'-{args.mixed_precision.upper()}'
    root_dir += f'-{args.max_image_size}'
    return root_dir

def get_precision(args):
    if args.mixed_precision == "bf16":
        dtype = torch.bfloat16
    elif args.mixed_precision == "fp16":
        dtype = torch.float16
    else:
        dtype = torch.float32
    return dtype

#################################################################################
#                             Training Logger                                   #
#################################################################################

def create_logger(logging_dir):
    """
    Create a logger that writes to a log file and stdout.
    """
    if dist.get_rank() == 0:  # real logger
        logging.basicConfig(
            level=logging.INFO,
            # format='[\033[34m%(asctime)s\033[0m] %(message)s',
            format='[%(asctime)s] %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S',
            handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
        )
        logger = logging.getLogger(__name__)

    else:  # dummy logger (does nothing)
        logger = logging.getLogger(__name__)
        logger.addHandler(logging.NullHandler())
    return logger


def create_tensorboard(tensorboard_dir):
    """
    Create a tensorboard that saves losses.
    """
    if dist.get_rank() == 0:  # real tensorboard
        # tensorboard
        writer = SummaryWriter(tensorboard_dir)

    return writer


def write_tensorboard(writer, *args):
    '''
    write the loss information to a tensorboard file.
    Only for pytorch DDP mode.
    '''
    if dist.get_rank() == 0:  # real tensorboard
        writer.add_scalar(args[0], args[1], args[2])


#################################################################################
#                      EMA Update/ DDP Training Utils                           #
#################################################################################

@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
    """
    Step the EMA model towards the current model.
    """
    ema_params = OrderedDict(ema_model.named_parameters())
    model_params = OrderedDict(model.named_parameters())

    for name, param in model_params.items():
        # TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
        ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)


def requires_grad(model, flag=True):
    """
    Set requires_grad flag for all parameters in a model.
    """
    for p in model.parameters():
        p.requires_grad = flag


def cleanup():
    """
    End DDP training.
    """
    dist.destroy_process_group()


def setup_distributed(backend="nccl", port=None):
    """Initialize distributed training environment.
    support both slurm and torch.distributed.launch
    see torch.distributed.init_process_group() for more details
    """
    num_gpus = torch.cuda.device_count()

    if "SLURM_JOB_ID" in os.environ:
        rank = int(os.environ["SLURM_PROCID"])
        world_size = int(os.environ["SLURM_NTASKS"])
        node_list = os.environ["SLURM_NODELIST"]
        addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
        # specify master port
        if port is not None:
            os.environ["MASTER_PORT"] = str(port)
        elif "MASTER_PORT" not in os.environ:
            # os.environ["MASTER_PORT"] = "29566"
            os.environ["MASTER_PORT"] = str(29567 + num_gpus)
        if "MASTER_ADDR" not in os.environ:
            os.environ["MASTER_ADDR"] = addr
        os.environ["WORLD_SIZE"] = str(world_size)
        os.environ["LOCAL_RANK"] = str(rank % num_gpus)
        os.environ["RANK"] = str(rank)
    else:
        rank = int(os.environ["RANK"])
        world_size = int(os.environ["WORLD_SIZE"])

    # torch.cuda.set_device(rank % num_gpus)

    dist.init_process_group(
        backend=backend,
        world_size=world_size,
        rank=rank,
    )


#################################################################################
#                             Testing  Utils                                    #
#################################################################################

def save_video_grid(video, nrow=None):
    b, t, h, w, c = video.shape

    if nrow is None:
        nrow = math.ceil(math.sqrt(b))
    ncol = math.ceil(b / nrow)
    padding = 1
    video_grid = torch.zeros((t, (padding + h) * nrow + padding,
                              (padding + w) * ncol + padding, c), dtype=torch.uint8)

    print(video_grid.shape)
    for i in range(b):
        r = i // ncol
        c = i % ncol
        start_r = (padding + h) * r
        start_c = (padding + w) * c
        video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i]

    return video_grid


#################################################################################
#                             MMCV  Utils                                    #
#################################################################################


def collect_env():
    # Copyright (c) OpenMMLab. All rights reserved.
    from mmcv.utils import collect_env as collect_base_env
    from mmcv.utils import get_git_hash
    """Collect the information of the running environments."""

    env_info = collect_base_env()
    env_info['MMClassification'] = get_git_hash()[:7]

    for name, val in env_info.items():
        print(f'{name}: {val}')

    print(torch.cuda.get_arch_list())
    print(torch.version.cuda)


#################################################################################
#                          Pixart-alpha  Utils                                  #
#################################################################################


bad_punct_regex = re.compile(r'['+'#®•©™&@·º½¾¿¡§~'+'\)'+'\('+'\]'+'\['+'\}'+'\{'+'\|'+'\\'+'\/'+'\*' + r']{1,}')  # noqa

def text_preprocessing(text):
    # The exact text cleaning as was in the training stage:
    text = clean_caption(text)
    text = clean_caption(text)
    return text

def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()

def clean_caption(caption):
    caption = str(caption)
    caption = ul.unquote_plus(caption)
    caption = caption.strip().lower()
    caption = re.sub('<person>', 'person', caption)
    # urls:
    caption = re.sub(
        r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',  # noqa
        '', caption)  # regex for urls
    caption = re.sub(
        r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',  # noqa
        '', caption)  # regex for urls
    # html:
    caption = BeautifulSoup(caption, features='html.parser').text

    # @<nickname>
    caption = re.sub(r'@[\w\d]+\b', '', caption)

    # 31C0—31EF CJK Strokes
    # 31F0—31FF Katakana Phonetic Extensions
    # 3200—32FF Enclosed CJK Letters and Months
    # 3300—33FF CJK Compatibility
    # 3400—4DBF CJK Unified Ideographs Extension A
    # 4DC0—4DFF Yijing Hexagram Symbols
    # 4E00—9FFF CJK Unified Ideographs
    caption = re.sub(r'[\u31c0-\u31ef]+', '', caption)
    caption = re.sub(r'[\u31f0-\u31ff]+', '', caption)
    caption = re.sub(r'[\u3200-\u32ff]+', '', caption)
    caption = re.sub(r'[\u3300-\u33ff]+', '', caption)
    caption = re.sub(r'[\u3400-\u4dbf]+', '', caption)
    caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption)
    caption = re.sub(r'[\u4e00-\u9fff]+', '', caption)
    #######################################################

    # все виды тире / all types of dash --> "-"
    caption = re.sub(
        r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+',  # noqa
        '-', caption)

    # кавычки к одному стандарту
    caption = re.sub(r'[`´«»“”¨]', '"', caption)
    caption = re.sub(r'[‘’]', "'", caption)

    # &quot;
    caption = re.sub(r'&quot;?', '', caption)
    # &amp
    caption = re.sub(r'&amp', '', caption)

    # ip adresses:
    caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption)

    # article ids:
    caption = re.sub(r'\d:\d\d\s+$', '', caption)

    # \n
    caption = re.sub(r'\\n', ' ', caption)

    # "#123"
    caption = re.sub(r'#\d{1,3}\b', '', caption)
    # "#12345.."
    caption = re.sub(r'#\d{5,}\b', '', caption)
    # "123456.."
    caption = re.sub(r'\b\d{6,}\b', '', caption)
    # filenames:
    caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption)

    #
    caption = re.sub(r'[\"\']{2,}', r'"', caption)  # """AUSVERKAUFT"""
    caption = re.sub(r'[\.]{2,}', r' ', caption)  # """AUSVERKAUFT"""

    caption = re.sub(bad_punct_regex, r' ', caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
    caption = re.sub(r'\s+\.\s+', r' ', caption)  # " . "

    # this-is-my-cute-cat / this_is_my_cute_cat
    regex2 = re.compile(r'(?:\-|\_)')
    if len(re.findall(regex2, caption)) > 3:
        caption = re.sub(regex2, ' ', caption)

    caption = basic_clean(caption)

    caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption)  # jc6640
    caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption)  # jc6640vc
    caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption)  # 6640vc231

    caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption)
    caption = re.sub(r'(free\s)?download(\sfree)?', '', caption)
    caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption)
    caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption)
    caption = re.sub(r'\bpage\s+\d+\b', '', caption)

    caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption)  # j2d1a2a...

    caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)

    caption = re.sub(r'\b\s+\:\s+', r': ', caption)
    caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
    caption = re.sub(r'\s+', ' ', caption)

    caption.strip()

    caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
    caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
    caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
    caption = re.sub(r'^\.\S+$', '', caption)

    return caption.strip()