Spaces:
Runtime error
Runtime error
File size: 5,008 Bytes
bab971b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import sys
sys.path.append(".")
import torch
import random
import numpy as np
from opensora.models.ae.videobase import (
CausalVAEModel,
)
from torch.utils.data import DataLoader
from opensora.models.ae.videobase.dataset_videobase import VideoDataset
import argparse
from transformers import HfArgumentParser
from dataclasses import dataclass, field, asdict
import torch.distributed as dist
import os
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
@dataclass
class TrainingArguments:
exp_name: str = field(
default="causalvae", metadata={"help": "The name of the experiment."}
)
batch_size: int = field(
default=1, metadata={"help": "The number of samples per training iteration."}
)
precision: str = field(
default="bf16",
metadata={"help": "The precision type used for training."},
)
max_steps: int = field(
default=100000,
metadata={"help": "The maximum number of steps for the training process."},
)
save_steps: int = field(
default=2000,
metadata={"help": "The interval at which to save the model during training."},
)
output_dir: str = field(
default="results/causalvae",
metadata={"help": "The directory where training results are saved."},
)
video_path: str = field(
default="/remote-home1/dataset/data_split_tt",
metadata={"help": "The path where the video data is stored."},
)
video_num_frames: int = field(
default=17, metadata={"help": "The number of frames per video."}
)
sample_rate: int = field(
default=1,
metadata={
"help": "The sampling interval."
},
)
dynamic_sample: bool = field(
default=False, metadata={"help": "Whether to use dynamic sampling."}
)
model_config: str = field(
default="scripts/causalvae/288.yaml",
metadata={"help": "The path to the model configuration file."},
)
n_nodes: int = field(
default=1, metadata={"help": "The number of nodes used for training."}
)
devices: int = field(
default=8, metadata={"help": "The number of devices used for training."}
)
resolution: int = field(
default=256, metadata={"help": "The resolution of the videos."}
)
num_workers: int = field(
default=8,
metadata={"help": "The number of subprocesses used for data handling."},
)
resume_from_checkpoint: str = field(
default=None, metadata={"help": "Resume training from a specified checkpoint."}
)
load_from_checkpoint: str = field(
default=None, metadata={"help": "Load the model from a specified checkpoint."}
)
def set_seed(seed=1006):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def load_callbacks_and_logger(args):
checkpoint_callback = ModelCheckpoint(
dirpath=args.output_dir,
filename="model-{epoch:02d}-{step}",
every_n_train_steps=args.save_steps,
save_top_k=-1,
save_on_train_epoch_end=False,
)
lr_monitor = LearningRateMonitor(logging_interval="step")
logger = WandbLogger(name=args.exp_name, log_model=False)
return [checkpoint_callback, lr_monitor], logger
def train(args):
set_seed()
# Load Config
model = CausalVAEModel()
if args.load_from_checkpoint is not None:
model = CausalVAEModel.from_pretrained(args.load_from_checkpoint)
else:
model = CausalVAEModel.from_config(args.model_config)
if (dist.is_initialized() and dist.get_rank() == 0) or not dist.is_initialized():
print(model)
# Load Dataset
dataset = VideoDataset(
args.video_path,
sequence_length=args.video_num_frames,
resolution=args.resolution,
sample_rate=args.sample_rate,
dynamic_sample=args.dynamic_sample,
)
train_loader = DataLoader(
dataset,
shuffle=True,
num_workers=args.num_workers,
batch_size=args.batch_size,
pin_memory=True,
)
# Load Callbacks and Logger
callbacks, logger = load_callbacks_and_logger(args)
# Load Trainer
trainer = pl.Trainer(
accelerator="cuda",
devices=args.devices,
num_nodes=args.n_nodes,
callbacks=callbacks,
logger=logger,
log_every_n_steps=5,
precision=args.precision,
max_steps=args.max_steps,
strategy="ddp_find_unused_parameters_true",
)
trainer_kwargs = {}
if args.resume_from_checkpoint:
trainer_kwargs["ckpt_path"] = args.resume_from_checkpoint
trainer.fit(model, train_loader, **trainer_kwargs)
# Save Huggingface Model
model.save_pretrained(os.path.join(args.output_dir, "hf"))
if __name__ == "__main__":
parser = HfArgumentParser(TrainingArguments)
args = parser.parse_args_into_dataclasses()
train(args[0])
|