Spaces:
Runtime error
Runtime error
import json | |
import os, io, csv, math, random | |
import numpy as np | |
import torchvision | |
from einops import rearrange | |
from decord import VideoReader | |
from os.path import join as opj | |
import gc | |
import torch | |
import torchvision.transforms as transforms | |
from torch.utils.data.dataset import Dataset | |
from tqdm import tqdm | |
from PIL import Image | |
from opensora.utils.dataset_utils import DecordInit | |
from opensora.utils.utils import text_preprocessing | |
def random_video_noise(t, c, h, w): | |
vid = torch.rand(t, c, h, w) * 255.0 | |
vid = vid.to(torch.uint8) | |
return vid | |
class T2V_dataset(Dataset): | |
def __init__(self, args, transform, temporal_sample, tokenizer): | |
self.image_data = args.image_data | |
self.video_data = args.video_data | |
self.num_frames = args.num_frames | |
self.transform = transform | |
self.temporal_sample = temporal_sample | |
self.tokenizer = tokenizer | |
self.model_max_length = args.model_max_length | |
self.v_decoder = DecordInit() | |
self.vid_cap_list = self.get_vid_cap_list() | |
self.use_image_num = args.use_image_num | |
self.use_img_from_vid = args.use_img_from_vid | |
if self.use_image_num != 0 and not self.use_img_from_vid: | |
self.img_cap_list = self.get_img_cap_list() | |
def __len__(self): | |
return len(self.vid_cap_list) | |
def __getitem__(self, idx): | |
try: | |
# import ipdb;ipdb.set_trace() | |
video_data = self.get_video(idx) | |
image_data = {} | |
if self.use_image_num != 0 and self.use_img_from_vid: | |
image_data = self.get_image_from_video(video_data) | |
elif self.use_image_num != 0 and not self.use_img_from_vid: | |
image_data = self.get_image(idx) | |
else: | |
raise NotImplementedError | |
gc.collect() | |
return dict(video_data=video_data, image_data=image_data) | |
except Exception as e: | |
# print(f'Error with {e}, {self.vid_cap_list[idx]}') | |
if os.path.exists(self.vid_cap_list[idx]['path']) and '_resize_1080p' in self.vid_cap_list[idx]['path']: | |
os.remove(self.vid_cap_list[idx]['path']) | |
print('remove:', self.vid_cap_list[idx]['path']) | |
return self.__getitem__(random.randint(0, self.__len__() - 1)) | |
def get_video(self, idx): | |
# video = random.choice([random_video_noise(65, 3, 720, 360) * 255, random_video_noise(65, 3, 1024, 1024), random_video_noise(65, 3, 360, 720)]) | |
# # print('random shape', video.shape) | |
# input_ids = torch.ones(1, 120).to(torch.long).squeeze(0) | |
# cond_mask = torch.cat([torch.ones(1, 60).to(torch.long), torch.ones(1, 60).to(torch.long)], dim=1).squeeze(0) | |
video_path = self.vid_cap_list[idx]['path'] | |
frame_idx = self.vid_cap_list[idx]['frame_idx'] | |
#print('before decord') | |
video = self.decord_read(video_path, frame_idx) | |
# video = self.tv_read(video_path, frame_idx) | |
#print('after decord') | |
video = self.transform(video) # T C H W -> T C H W | |
# del raw_video | |
# gc.collect() | |
# video = torch.rand(65, 3, 512, 512) | |
#print('after transform') | |
video = video.transpose(0, 1) # T C H W -> C T H W | |
text = self.vid_cap_list[idx]['cap'] | |
text = text_preprocessing(text) | |
text_tokens_and_mask = self.tokenizer( | |
text, | |
max_length=self.model_max_length, | |
padding='max_length', | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors='pt' | |
) | |
input_ids = text_tokens_and_mask['input_ids'] | |
cond_mask = text_tokens_and_mask['attention_mask'] | |
return dict(video=video, input_ids=input_ids, cond_mask=cond_mask) | |
def get_image_from_video(self, video_data): | |
select_image_idx = np.linspace(0, self.num_frames-1, self.use_image_num, dtype=int) | |
assert self.num_frames >= self.use_image_num | |
image = [video_data['video'][:, i:i+1] for i in select_image_idx] # num_img [c, 1, h, w] | |
input_ids = video_data['input_ids'].repeat(self.use_image_num, 1) # self.use_image_num, l | |
cond_mask = video_data['cond_mask'].repeat(self.use_image_num, 1) # self.use_image_num, l | |
return dict(image=image, input_ids=input_ids, cond_mask=cond_mask) | |
def get_image(self, idx): | |
idx = idx % len(self.img_cap_list) # out of range | |
image_data = self.img_cap_list[idx] # [{'path': path, 'cap': cap}, ...] | |
image = [Image.open(i['path']).convert('RGB') for i in image_data] # num_img [h, w, c] | |
image = [torch.from_numpy(np.array(i)) for i in image] # num_img [h, w, c] | |
image = [rearrange(i, 'h w c -> c h w').unsqueeze(0) for i in image] # num_img [1 c h w] | |
image = [self.transform(i) for i in image] # num_img [1 C H W] -> num_img [1 C H W] | |
image = [i.transpose(0, 1) for i in image] # num_img [1 C H W] -> num_img [C 1 H W] | |
caps = [i['cap'] for i in image_data] | |
text = [text_preprocessing(cap) for cap in caps] | |
input_ids, cond_mask = [], [] | |
for t in text: | |
text_tokens_and_mask = self.tokenizer( | |
t, | |
max_length=self.model_max_length, | |
padding='max_length', | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors='pt' | |
) | |
input_ids.append(text_tokens_and_mask['input_ids']) | |
cond_mask.append(text_tokens_and_mask['attention_mask']) | |
input_ids = torch.cat(input_ids) # self.use_image_num, l | |
cond_mask = torch.cat(cond_mask) # self.use_image_num, l | |
return dict(image=image, input_ids=input_ids, cond_mask=cond_mask) | |
def tv_read(self, path, frame_idx=None): | |
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='TCHW') | |
total_frames = len(vframes) | |
if frame_idx is None: | |
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) | |
else: | |
start_frame_ind, end_frame_ind = frame_idx.split(':') | |
start_frame_ind, end_frame_ind = int(start_frame_ind), int(end_frame_ind) | |
# assert end_frame_ind - start_frame_ind >= self.num_frames | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int) | |
# frame_indice = np.linspace(0, 63, self.num_frames, dtype=int) | |
video = vframes[frame_indice] # (T, C, H, W) | |
return video | |
def decord_read(self, path, frame_idx=None): | |
decord_vr = self.v_decoder(path) | |
total_frames = len(decord_vr) | |
# Sampling video frames | |
if frame_idx is None: | |
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) | |
else: | |
start_frame_ind, end_frame_ind = frame_idx.split(':') | |
start_frame_ind, end_frame_ind = int(start_frame_ind), int(end_frame_ind) | |
start_frame_ind, end_frame_ind = int(start_frame_ind), int(start_frame_ind) + self.num_frames | |
# assert end_frame_ind - start_frame_ind >= self.num_frames | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int) | |
# frame_indice = np.linspace(0, 63, self.num_frames, dtype=int) | |
video_data = decord_vr.get_batch(frame_indice).asnumpy() | |
video_data = torch.from_numpy(video_data) | |
video_data = video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W) | |
return video_data | |
def get_vid_cap_list(self): | |
vid_cap_lists = [] | |
with open(self.video_data, 'r') as f: | |
folder_anno = [i.strip().split(',') for i in f.readlines() if len(i.strip()) > 0] | |
# print(folder_anno) | |
for folder, anno in folder_anno: | |
with open(anno, 'r') as f: | |
vid_cap_list = json.load(f) | |
print(f'Building {anno}...') | |
for i in tqdm(range(len(vid_cap_list))): | |
path = opj(folder, vid_cap_list[i]['path']) | |
if os.path.exists(path.replace('.mp4', '_resize_1080p.mp4')): | |
path = path.replace('.mp4', '_resize_1080p.mp4') | |
vid_cap_list[i]['path'] = path | |
vid_cap_lists += vid_cap_list | |
return vid_cap_lists | |
def get_img_cap_list(self): | |
img_cap_lists = [] | |
with open(self.image_data, 'r') as f: | |
folder_anno = [i.strip().split(',') for i in f.readlines() if len(i.strip()) > 0] | |
for folder, anno in folder_anno: | |
with open(anno, 'r') as f: | |
img_cap_list = json.load(f) | |
print(f'Building {anno}...') | |
for i in tqdm(range(len(img_cap_list))): | |
img_cap_list[i]['path'] = opj(folder, img_cap_list[i]['path']) | |
img_cap_lists += img_cap_list | |
img_cap_lists = [img_cap_lists[i: i+self.use_image_num] for i in range(0, len(img_cap_lists), self.use_image_num)] | |
return img_cap_lists[:-1] # drop last to avoid error length | |