Spaces:
Runtime error
Runtime error
import math | |
from einops import rearrange | |
import decord | |
from torch.nn import functional as F | |
import torch | |
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG'] | |
def is_image_file(filename): | |
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) | |
class DecordInit(object): | |
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader.""" | |
def __init__(self, num_threads=1): | |
self.num_threads = num_threads | |
self.ctx = decord.cpu(0) | |
def __call__(self, filename): | |
"""Perform the Decord initialization. | |
Args: | |
results (dict): The resulting dict to be modified and passed | |
to the next transform in pipeline. | |
""" | |
reader = decord.VideoReader(filename, | |
ctx=self.ctx, | |
num_threads=self.num_threads) | |
return reader | |
def __repr__(self): | |
repr_str = (f'{self.__class__.__name__}(' | |
f'sr={self.sr},' | |
f'num_threads={self.num_threads})') | |
return repr_str | |
def pad_to_multiple(number, ds_stride): | |
remainder = number % ds_stride | |
if remainder == 0: | |
return number | |
else: | |
padding = ds_stride - remainder | |
return number + padding | |
class Collate: | |
def __init__(self, args): | |
self.max_image_size = args.max_image_size | |
self.ae_stride = args.ae_stride | |
self.ae_stride_t = args.ae_stride_t | |
self.ae_stride_thw = (self.ae_stride_t, self.ae_stride, self.ae_stride) | |
self.ae_stride_1hw = (1, self.ae_stride, self.ae_stride) | |
self.patch_size = args.patch_size | |
self.patch_size_t = args.patch_size_t | |
self.patch_size_thw = (self.patch_size_t, self.patch_size, self.patch_size) | |
self.patch_size_1hw = (1, self.patch_size, self.patch_size) | |
self.num_frames = args.num_frames | |
self.use_image_num = args.use_image_num | |
self.max_thw = (self.num_frames, self.max_image_size, self.max_image_size) | |
self.max_1hw = (1, self.max_image_size, self.max_image_size) | |
def package(self, batch): | |
# import ipdb;ipdb.set_trace() | |
batch_tubes_vid = [i['video_data']['video'] for i in batch] # b [c t h w] | |
input_ids_vid = torch.stack([i['video_data']['input_ids'] for i in batch]) # b 1 l | |
cond_mask_vid = torch.stack([i['video_data']['cond_mask'] for i in batch]) # b 1 l | |
batch_tubes_img, input_ids_img, cond_mask_img = None, None, None | |
if self.use_image_num != 0: | |
batch_tubes_img = [j for i in batch for j in i['image_data']['image']] # b*num_img [c 1 h w] | |
input_ids_img = torch.stack([i['image_data']['input_ids'] for i in batch]) # b image_num l | |
cond_mask_img = torch.stack([i['image_data']['cond_mask'] for i in batch]) # b image_num l | |
return batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img | |
def __call__(self, batch): | |
batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img = self.package(batch) | |
# import ipdb;ipdb.set_trace() | |
ds_stride = self.ae_stride * self.patch_size | |
t_ds_stride = self.ae_stride_t * self.patch_size_t | |
if self.use_image_num == 0: | |
pad_batch_tubes, attention_mask = self.process(batch_tubes_vid, t_ds_stride, ds_stride, | |
self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True) | |
# attention_mask: b t h w | |
input_ids, cond_mask = input_ids_vid.squeeze(1), cond_mask_vid.squeeze(1) # b 1 l -> b l | |
else: | |
pad_batch_tubes_vid, attention_mask_vid = self.process(batch_tubes_vid, t_ds_stride, ds_stride, | |
self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True) | |
# attention_mask_vid: b t h w | |
pad_batch_tubes_img, attention_mask_img = self.process(batch_tubes_img, 1, ds_stride, | |
self.max_1hw, self.ae_stride_1hw, self.patch_size_1hw, extra_1=False) | |
pad_batch_tubes_img = rearrange(pad_batch_tubes_img, '(b i) c 1 h w -> b c i h w', i=self.use_image_num) | |
attention_mask_img = rearrange(attention_mask_img, '(b i) 1 h w -> b i h w', i=self.use_image_num) | |
pad_batch_tubes = torch.cat([pad_batch_tubes_vid, pad_batch_tubes_img], dim=2) # concat at temporal, video first | |
# attention_mask_img: b num_img h w | |
attention_mask = torch.cat([attention_mask_vid, attention_mask_img], dim=1) # b t+num_img h w | |
input_ids = torch.cat([input_ids_vid, input_ids_img], dim=1) # b 1+num_img hw | |
cond_mask = torch.cat([cond_mask_vid, cond_mask_img], dim=1) # b 1+num_img hw | |
return pad_batch_tubes, attention_mask, input_ids, cond_mask | |
def process(self, batch_tubes, t_ds_stride, ds_stride, max_thw, ae_stride_thw, patch_size_thw, extra_1): | |
# pad to max multiple of ds_stride | |
batch_input_size = [i.shape for i in batch_tubes] # [(c t h w), (c t h w)] | |
max_t, max_h, max_w = max_thw | |
pad_max_t, pad_max_h, pad_max_w = pad_to_multiple(max_t-1 if extra_1 else max_t, t_ds_stride), \ | |
pad_to_multiple(max_h, ds_stride), \ | |
pad_to_multiple(max_w, ds_stride) | |
pad_max_t = pad_max_t + 1 if extra_1 else pad_max_t | |
each_pad_t_h_w = [[pad_max_t - i.shape[1], | |
pad_max_h - i.shape[2], | |
pad_max_w - i.shape[3]] for i in batch_tubes] | |
pad_batch_tubes = [F.pad(im, | |
(0, pad_w, | |
0, pad_h, | |
0, pad_t), value=0) for (pad_t, pad_h, pad_w), im in zip(each_pad_t_h_w, batch_tubes)] | |
pad_batch_tubes = torch.stack(pad_batch_tubes, dim=0) | |
# make attention_mask | |
# first_channel_first_frame, first_channel_other_frame = pad_batch_tubes[:, :1, :1], pad_batch_tubes[:, :1, 1:] # first channel to make attention_mask | |
# attention_mask_first_frame = F.max_pool3d(first_channel_first_frame, kernel_size=(1, *ae_stride_thw[1:]), stride=(1, *ae_stride_thw[1:])) | |
# if first_channel_other_frame.numel() != 0: | |
# attention_mask_other_frame = F.max_pool3d(first_channel_other_frame, kernel_size=ae_stride_thw, stride=ae_stride_thw) | |
# attention_mask = torch.cat([attention_mask_first_frame, attention_mask_other_frame], dim=2) | |
# else: | |
# attention_mask = attention_mask_first_frame | |
# attention_mask_ = attention_mask[:, 0].bool().float() # b t h w, do not channel | |
# import ipdb;ipdb.set_trace() | |
max_tube_size = [pad_max_t, pad_max_h, pad_max_w] | |
max_latent_size = [((max_tube_size[0]-1) // ae_stride_thw[0] + 1) if extra_1 else (max_tube_size[0] // ae_stride_thw[0]), | |
max_tube_size[1] // ae_stride_thw[1], | |
max_tube_size[2] // ae_stride_thw[2]] | |
valid_latent_size = [[int(math.ceil((i[1]-1) / ae_stride_thw[0])) + 1 if extra_1 else int(math.ceil(i[1] / ae_stride_thw[0])), | |
int(math.ceil(i[2] / ae_stride_thw[1])), | |
int(math.ceil(i[3] / ae_stride_thw[2]))] for i in batch_input_size] | |
attention_mask = [F.pad(torch.ones(i), | |
(0, max_latent_size[2] - i[2], | |
0, max_latent_size[1] - i[1], | |
0, max_latent_size[0] - i[0]), value=0) for i in valid_latent_size] | |
attention_mask = torch.stack(attention_mask) # b t h w | |
# max_tube_size = [pad_max_t, pad_max_h, pad_max_w] | |
# max_latent_size = [((max_tube_size[0]-1) // ae_stride_thw[0] + 1) if extra_1 else (max_tube_size[0] // ae_stride_thw[0]), | |
# max_tube_size[1] // ae_stride_thw[1], | |
# max_tube_size[2] // ae_stride_thw[2]] | |
# max_patchify_latent_size = [((max_latent_size[0]-1) // patch_size_thw[0] + 1) if extra_1 else (max_latent_size[0] // patch_size_thw[0]), | |
# max_latent_size[1] // patch_size_thw[1], | |
# max_latent_size[2] // patch_size_thw[2]] | |
# valid_patchify_latent_size = [[int(math.ceil((i[1]-1) / t_ds_stride)) + 1 if extra_1 else int(math.ceil(i[1] / t_ds_stride)), | |
# int(math.ceil(i[2] / ds_stride)), | |
# int(math.ceil(i[3] / ds_stride))] for i in batch_input_size] | |
# attention_mask = [F.pad(torch.ones(i), | |
# (0, max_patchify_latent_size[2] - i[2], | |
# 0, max_patchify_latent_size[1] - i[1], | |
# 0, max_patchify_latent_size[0] - i[0]), value=0) for i in valid_patchify_latent_size] | |
# attention_mask = torch.stack(attention_mask) # b t h w | |
return pad_batch_tubes, attention_mask | |