LinB203
update
bab971b
raw
history blame
9.26 kB
import math
from einops import rearrange
import decord
from torch.nn import functional as F
import torch
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
class DecordInit(object):
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader."""
def __init__(self, num_threads=1):
self.num_threads = num_threads
self.ctx = decord.cpu(0)
def __call__(self, filename):
"""Perform the Decord initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
reader = decord.VideoReader(filename,
ctx=self.ctx,
num_threads=self.num_threads)
return reader
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'sr={self.sr},'
f'num_threads={self.num_threads})')
return repr_str
def pad_to_multiple(number, ds_stride):
remainder = number % ds_stride
if remainder == 0:
return number
else:
padding = ds_stride - remainder
return number + padding
class Collate:
def __init__(self, args):
self.max_image_size = args.max_image_size
self.ae_stride = args.ae_stride
self.ae_stride_t = args.ae_stride_t
self.ae_stride_thw = (self.ae_stride_t, self.ae_stride, self.ae_stride)
self.ae_stride_1hw = (1, self.ae_stride, self.ae_stride)
self.patch_size = args.patch_size
self.patch_size_t = args.patch_size_t
self.patch_size_thw = (self.patch_size_t, self.patch_size, self.patch_size)
self.patch_size_1hw = (1, self.patch_size, self.patch_size)
self.num_frames = args.num_frames
self.use_image_num = args.use_image_num
self.max_thw = (self.num_frames, self.max_image_size, self.max_image_size)
self.max_1hw = (1, self.max_image_size, self.max_image_size)
def package(self, batch):
# import ipdb;ipdb.set_trace()
batch_tubes_vid = [i['video_data']['video'] for i in batch] # b [c t h w]
input_ids_vid = torch.stack([i['video_data']['input_ids'] for i in batch]) # b 1 l
cond_mask_vid = torch.stack([i['video_data']['cond_mask'] for i in batch]) # b 1 l
batch_tubes_img, input_ids_img, cond_mask_img = None, None, None
if self.use_image_num != 0:
batch_tubes_img = [j for i in batch for j in i['image_data']['image']] # b*num_img [c 1 h w]
input_ids_img = torch.stack([i['image_data']['input_ids'] for i in batch]) # b image_num l
cond_mask_img = torch.stack([i['image_data']['cond_mask'] for i in batch]) # b image_num l
return batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img
def __call__(self, batch):
batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img = self.package(batch)
# import ipdb;ipdb.set_trace()
ds_stride = self.ae_stride * self.patch_size
t_ds_stride = self.ae_stride_t * self.patch_size_t
if self.use_image_num == 0:
pad_batch_tubes, attention_mask = self.process(batch_tubes_vid, t_ds_stride, ds_stride,
self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True)
# attention_mask: b t h w
input_ids, cond_mask = input_ids_vid.squeeze(1), cond_mask_vid.squeeze(1) # b 1 l -> b l
else:
pad_batch_tubes_vid, attention_mask_vid = self.process(batch_tubes_vid, t_ds_stride, ds_stride,
self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True)
# attention_mask_vid: b t h w
pad_batch_tubes_img, attention_mask_img = self.process(batch_tubes_img, 1, ds_stride,
self.max_1hw, self.ae_stride_1hw, self.patch_size_1hw, extra_1=False)
pad_batch_tubes_img = rearrange(pad_batch_tubes_img, '(b i) c 1 h w -> b c i h w', i=self.use_image_num)
attention_mask_img = rearrange(attention_mask_img, '(b i) 1 h w -> b i h w', i=self.use_image_num)
pad_batch_tubes = torch.cat([pad_batch_tubes_vid, pad_batch_tubes_img], dim=2) # concat at temporal, video first
# attention_mask_img: b num_img h w
attention_mask = torch.cat([attention_mask_vid, attention_mask_img], dim=1) # b t+num_img h w
input_ids = torch.cat([input_ids_vid, input_ids_img], dim=1) # b 1+num_img hw
cond_mask = torch.cat([cond_mask_vid, cond_mask_img], dim=1) # b 1+num_img hw
return pad_batch_tubes, attention_mask, input_ids, cond_mask
def process(self, batch_tubes, t_ds_stride, ds_stride, max_thw, ae_stride_thw, patch_size_thw, extra_1):
# pad to max multiple of ds_stride
batch_input_size = [i.shape for i in batch_tubes] # [(c t h w), (c t h w)]
max_t, max_h, max_w = max_thw
pad_max_t, pad_max_h, pad_max_w = pad_to_multiple(max_t-1 if extra_1 else max_t, t_ds_stride), \
pad_to_multiple(max_h, ds_stride), \
pad_to_multiple(max_w, ds_stride)
pad_max_t = pad_max_t + 1 if extra_1 else pad_max_t
each_pad_t_h_w = [[pad_max_t - i.shape[1],
pad_max_h - i.shape[2],
pad_max_w - i.shape[3]] for i in batch_tubes]
pad_batch_tubes = [F.pad(im,
(0, pad_w,
0, pad_h,
0, pad_t), value=0) for (pad_t, pad_h, pad_w), im in zip(each_pad_t_h_w, batch_tubes)]
pad_batch_tubes = torch.stack(pad_batch_tubes, dim=0)
# make attention_mask
# first_channel_first_frame, first_channel_other_frame = pad_batch_tubes[:, :1, :1], pad_batch_tubes[:, :1, 1:] # first channel to make attention_mask
# attention_mask_first_frame = F.max_pool3d(first_channel_first_frame, kernel_size=(1, *ae_stride_thw[1:]), stride=(1, *ae_stride_thw[1:]))
# if first_channel_other_frame.numel() != 0:
# attention_mask_other_frame = F.max_pool3d(first_channel_other_frame, kernel_size=ae_stride_thw, stride=ae_stride_thw)
# attention_mask = torch.cat([attention_mask_first_frame, attention_mask_other_frame], dim=2)
# else:
# attention_mask = attention_mask_first_frame
# attention_mask_ = attention_mask[:, 0].bool().float() # b t h w, do not channel
# import ipdb;ipdb.set_trace()
max_tube_size = [pad_max_t, pad_max_h, pad_max_w]
max_latent_size = [((max_tube_size[0]-1) // ae_stride_thw[0] + 1) if extra_1 else (max_tube_size[0] // ae_stride_thw[0]),
max_tube_size[1] // ae_stride_thw[1],
max_tube_size[2] // ae_stride_thw[2]]
valid_latent_size = [[int(math.ceil((i[1]-1) / ae_stride_thw[0])) + 1 if extra_1 else int(math.ceil(i[1] / ae_stride_thw[0])),
int(math.ceil(i[2] / ae_stride_thw[1])),
int(math.ceil(i[3] / ae_stride_thw[2]))] for i in batch_input_size]
attention_mask = [F.pad(torch.ones(i),
(0, max_latent_size[2] - i[2],
0, max_latent_size[1] - i[1],
0, max_latent_size[0] - i[0]), value=0) for i in valid_latent_size]
attention_mask = torch.stack(attention_mask) # b t h w
# max_tube_size = [pad_max_t, pad_max_h, pad_max_w]
# max_latent_size = [((max_tube_size[0]-1) // ae_stride_thw[0] + 1) if extra_1 else (max_tube_size[0] // ae_stride_thw[0]),
# max_tube_size[1] // ae_stride_thw[1],
# max_tube_size[2] // ae_stride_thw[2]]
# max_patchify_latent_size = [((max_latent_size[0]-1) // patch_size_thw[0] + 1) if extra_1 else (max_latent_size[0] // patch_size_thw[0]),
# max_latent_size[1] // patch_size_thw[1],
# max_latent_size[2] // patch_size_thw[2]]
# valid_patchify_latent_size = [[int(math.ceil((i[1]-1) / t_ds_stride)) + 1 if extra_1 else int(math.ceil(i[1] / t_ds_stride)),
# int(math.ceil(i[2] / ds_stride)),
# int(math.ceil(i[3] / ds_stride))] for i in batch_input_size]
# attention_mask = [F.pad(torch.ones(i),
# (0, max_patchify_latent_size[2] - i[2],
# 0, max_patchify_latent_size[1] - i[1],
# 0, max_patchify_latent_size[0] - i[0]), value=0) for i in valid_patchify_latent_size]
# attention_mask = torch.stack(attention_mask) # b t h w
return pad_batch_tubes, attention_mask