Reality123b commited on
Commit
689b1ad
·
verified ·
1 Parent(s): b907e84

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py CHANGED
@@ -10,6 +10,7 @@ from sentence_transformers import SentenceTransformer, util
10
  import torch
11
  import numpy as np
12
  import networkx as nx
 
13
 
14
  @dataclass
15
  class ChatMessage:
@@ -75,6 +76,20 @@ class XylariaChat:
75
  ]
76
 
77
  self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
80
  for emotion, delta in emotion_deltas.items():
@@ -102,6 +117,16 @@ class XylariaChat:
102
 
103
  def update_belief_system(self, statement, belief_score):
104
  self.belief_system[statement] = belief_score
 
 
 
 
 
 
 
 
 
 
105
 
106
  def run_metacognitive_layer(self):
107
  coherence_score = self.calculate_coherence()
@@ -446,6 +471,25 @@ class XylariaChat:
446
 
447
  self.update_knowledge_graph(entities, relationships)
448
  self.run_metacognitive_layer()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449
 
450
  input_tokens = sum(len(msg['content'].split()) for msg in messages)
451
  max_new_tokens = 16384 - input_tokens - 50
 
10
  import torch
11
  import numpy as np
12
  import networkx as nx
13
+ from collections import Counter
14
 
15
  @dataclass
16
  class ChatMessage:
 
76
  ]
77
 
78
  self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
79
+
80
+ self.causal_rules_db = {
81
+ "rain": ["wet roads", "flooding"],
82
+ "fire": ["heat", "smoke"],
83
+ "study": ["learn", "good grades"],
84
+ "exercise": ["fitness", "health"]
85
+ }
86
+
87
+ self.concept_generalizations = {
88
+ "planet": "system with orbiting bodies",
89
+ "star": "luminous sphere of plasma",
90
+ "democracy": "government by the people",
91
+ "photosynthesis": "process used by plants to convert light to energy"
92
+ }
93
 
94
  def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
95
  for emotion, delta in emotion_deltas.items():
 
117
 
118
  def update_belief_system(self, statement, belief_score):
119
  self.belief_system[statement] = belief_score
120
+
121
+ def dynamic_belief_update(self, user_message):
122
+ sentences = [s.strip() for s in user_message.split('.') if s.strip()]
123
+ sentence_counts = Counter(sentences)
124
+
125
+ for sentence, count in sentence_counts.items():
126
+ if count >= 2:
127
+ belief_score = self.belief_system.get(sentence, 0.5)
128
+ belief_score = min(belief_score + 0.2, 1.0)
129
+ self.update_belief_system(sentence, belief_score)
130
 
131
  def run_metacognitive_layer(self):
132
  coherence_score = self.calculate_coherence()
 
471
 
472
  self.update_knowledge_graph(entities, relationships)
473
  self.run_metacognitive_layer()
474
+
475
+ for message in messages:
476
+ if message['role'] == 'user':
477
+ self.dynamic_belief_update(message['content'])
478
+
479
+ for cause, effects in self.causal_rules_db.items():
480
+ if any(cause in msg['content'].lower() for msg in messages if msg['role'] == 'user') and any(
481
+ effect in msg['content'].lower() for msg in messages for effect in effects):
482
+ self.store_information("Causal Inference", f"It seems {cause} might be related to {', '.join(effects)}.")
483
+
484
+ for concept, generalization in self.concept_generalizations.items():
485
+ if any(concept in msg['content'].lower() for msg in messages if msg['role'] == 'user'):
486
+ self.store_information("Inferred Knowledge", f"This reminds me of a general principle: {generalization}.")
487
+
488
+ if self.internal_state["emotions"]["curiosity"] > 0.8 and any("?" in msg['content'] for msg in messages if msg['role'] == 'user'):
489
+ print("Simulating external knowledge seeking...")
490
+ self.store_information("External Knowledge", "This is a placeholder for external information I would have found")
491
+
492
+ self.store_information("User Input", user_input)
493
 
494
  input_tokens = sum(len(msg['content'].split()) for msg in messages)
495
  max_new_tokens = 16384 - input_tokens - 50