LaynzID12 commited on
Commit
a6ff202
·
verified ·
1 Parent(s): f2f67e2

Create vc_infer_pipeline.py

Browse files
Files changed (1) hide show
  1. lib/vc/vc_infer_pipeline.py +443 -0
lib/vc/vc_infer_pipeline.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np, parselmouth, torch, pdb, sys, os
2
+ from time import time as ttime
3
+ import torch.nn.functional as F
4
+ import scipy.signal as signal
5
+ import pyworld, os, traceback, faiss, librosa, torchcrepe
6
+ from scipy import signal
7
+ from functools import lru_cache
8
+
9
+ now_dir = os.getcwd()
10
+ sys.path.append(now_dir)
11
+
12
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
13
+
14
+ input_audio_path2wav = {}
15
+
16
+
17
+ @lru_cache
18
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
19
+ audio = input_audio_path2wav[input_audio_path]
20
+ f0, t = pyworld.harvest(
21
+ audio,
22
+ fs=fs,
23
+ f0_ceil=f0max,
24
+ f0_floor=f0min,
25
+ frame_period=frame_period,
26
+ )
27
+ f0 = pyworld.stonemask(audio, f0, t, fs)
28
+ return f0
29
+
30
+
31
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
32
+ # print(data1.max(),data2.max())
33
+ rms1 = librosa.feature.rms(
34
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
35
+ ) # 每半秒一个点
36
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
37
+ rms1 = torch.from_numpy(rms1)
38
+ rms1 = F.interpolate(
39
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
40
+ ).squeeze()
41
+ rms2 = torch.from_numpy(rms2)
42
+ rms2 = F.interpolate(
43
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
44
+ ).squeeze()
45
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
46
+ data2 *= (
47
+ torch.pow(rms1, torch.tensor(1 - rate))
48
+ * torch.pow(rms2, torch.tensor(rate - 1))
49
+ ).numpy()
50
+ return data2
51
+
52
+
53
+ class VC(object):
54
+ def __init__(self, tgt_sr, config):
55
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
56
+ config.x_pad,
57
+ config.x_query,
58
+ config.x_center,
59
+ config.x_max,
60
+ config.is_half,
61
+ )
62
+ self.sr = 16000 # hubert输入采样率
63
+ self.window = 160 # 每帧点数
64
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
65
+ self.t_pad_tgt = tgt_sr * self.x_pad
66
+ self.t_pad2 = self.t_pad * 2
67
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
68
+ self.t_center = self.sr * self.x_center # 查询切点位置
69
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
70
+ self.device = config.device
71
+
72
+ def get_f0(
73
+ self,
74
+ input_audio_path,
75
+ x,
76
+ p_len,
77
+ f0_up_key,
78
+ f0_method,
79
+ filter_radius,
80
+ inp_f0=None,
81
+ ):
82
+ global input_audio_path2wav
83
+ time_step = self.window / self.sr * 1000
84
+ f0_min = 50
85
+ f0_max = 1100
86
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
87
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
88
+ if f0_method == "pm":
89
+ f0 = (
90
+ parselmouth.Sound(x, self.sr)
91
+ .to_pitch_ac(
92
+ time_step=time_step / 1000,
93
+ voicing_threshold=0.6,
94
+ pitch_floor=f0_min,
95
+ pitch_ceiling=f0_max,
96
+ )
97
+ .selected_array["frequency"]
98
+ )
99
+ pad_size = (p_len - len(f0) + 1) // 2
100
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
101
+ f0 = np.pad(
102
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
103
+ )
104
+ elif f0_method == "harvest":
105
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
106
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
107
+ if filter_radius > 2:
108
+ f0 = signal.medfilt(f0, 3)
109
+ elif f0_method == "crepe":
110
+ model = "full"
111
+ # Pick a batch size that doesn't cause memory errors on your gpu
112
+ batch_size = 512
113
+ # Compute pitch using first gpu
114
+ audio = torch.tensor(np.copy(x))[None].float()
115
+ f0, pd = torchcrepe.predict(
116
+ audio,
117
+ self.sr,
118
+ self.window,
119
+ f0_min,
120
+ f0_max,
121
+ model,
122
+ batch_size=batch_size,
123
+ device=self.device,
124
+ return_periodicity=True,
125
+ )
126
+ pd = torchcrepe.filter.median(pd, 3)
127
+ f0 = torchcrepe.filter.mean(f0, 3)
128
+ f0[pd < 0.1] = 0
129
+ f0 = f0[0].cpu().numpy()
130
+ elif f0_method == "rmvpe":
131
+ if hasattr(self, "model_rmvpe") == False:
132
+ from rmvpe import RMVPE
133
+
134
+ print("loading rmvpe model")
135
+ self.model_rmvpe = RMVPE(
136
+ os.path.join("assets", "rvmpe", "rmvpe.pt"), is_half=self.is_half, device=self.device
137
+ )
138
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
139
+ f0 *= pow(2, f0_up_key / 12)
140
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
141
+ tf0 = self.sr // self.window # 每秒f0点数
142
+ if inp_f0 is not None:
143
+ delta_t = np.round(
144
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
145
+ ).astype("int16")
146
+ replace_f0 = np.interp(
147
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
148
+ )
149
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
150
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
151
+ :shape
152
+ ]
153
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
154
+ f0bak = f0.copy()
155
+ f0_mel = 1127 * np.log(1 + f0 / 700)
156
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
157
+ f0_mel_max - f0_mel_min
158
+ ) + 1
159
+ f0_mel[f0_mel <= 1] = 1
160
+ f0_mel[f0_mel > 255] = 255
161
+ f0_coarse = np.rint(f0_mel).astype(np.int)
162
+ return f0_coarse, f0bak # 1-0
163
+
164
+ def vc(
165
+ self,
166
+ model,
167
+ net_g,
168
+ sid,
169
+ audio0,
170
+ pitch,
171
+ pitchf,
172
+ times,
173
+ index,
174
+ big_npy,
175
+ index_rate,
176
+ version,
177
+ protect,
178
+ ): # ,file_index,file_big_npy
179
+ feats = torch.from_numpy(audio0)
180
+ if self.is_half:
181
+ feats = feats.half()
182
+ else:
183
+ feats = feats.float()
184
+ if feats.dim() == 2: # double channels
185
+ feats = feats.mean(-1)
186
+ assert feats.dim() == 1, feats.dim()
187
+ feats = feats.view(1, -1)
188
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
189
+
190
+ inputs = {
191
+ "source": feats.to(self.device),
192
+ "padding_mask": padding_mask,
193
+ "output_layer": 9 if version == "v1" else 12,
194
+ }
195
+ t0 = ttime()
196
+ with torch.no_grad():
197
+ logits = model.extract_features(**inputs)
198
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
199
+ if protect < 0.5 and pitch != None and pitchf != None:
200
+ feats0 = feats.clone()
201
+ if (
202
+ isinstance(index, type(None)) == False
203
+ and isinstance(big_npy, type(None)) == False
204
+ and index_rate != 0
205
+ ):
206
+ npy = feats[0].cpu().numpy()
207
+ if self.is_half:
208
+ npy = npy.astype("float32")
209
+
210
+ # _, I = index.search(npy, 1)
211
+ # npy = big_npy[I.squeeze()]
212
+
213
+ score, ix = index.search(npy, k=8)
214
+ weight = np.square(1 / score)
215
+ weight /= weight.sum(axis=1, keepdims=True)
216
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
217
+
218
+ if self.is_half:
219
+ npy = npy.astype("float16")
220
+ feats = (
221
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
222
+ + (1 - index_rate) * feats
223
+ )
224
+
225
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
226
+ if protect < 0.5 and pitch != None and pitchf != None:
227
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
228
+ 0, 2, 1
229
+ )
230
+ t1 = ttime()
231
+ p_len = audio0.shape[0] // self.window
232
+ if feats.shape[1] < p_len:
233
+ p_len = feats.shape[1]
234
+ if pitch != None and pitchf != None:
235
+ pitch = pitch[:, :p_len]
236
+ pitchf = pitchf[:, :p_len]
237
+
238
+ if protect < 0.5 and pitch != None and pitchf != None:
239
+ pitchff = pitchf.clone()
240
+ pitchff[pitchf > 0] = 1
241
+ pitchff[pitchf < 1] = protect
242
+ pitchff = pitchff.unsqueeze(-1)
243
+ feats = feats * pitchff + feats0 * (1 - pitchff)
244
+ feats = feats.to(feats0.dtype)
245
+ p_len = torch.tensor([p_len], device=self.device).long()
246
+ with torch.no_grad():
247
+ if pitch != None and pitchf != None:
248
+ audio1 = (
249
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
250
+ .data.cpu()
251
+ .float()
252
+ .numpy()
253
+ )
254
+ else:
255
+ audio1 = (
256
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
257
+ )
258
+ del feats, p_len, padding_mask
259
+ if torch.cuda.is_available():
260
+ torch.cuda.empty_cache()
261
+ t2 = ttime()
262
+ times[0] += t1 - t0
263
+ times[2] += t2 - t1
264
+ return audio1
265
+
266
+ def pipeline(
267
+ self,
268
+ model,
269
+ net_g,
270
+ sid,
271
+ audio,
272
+ input_audio_path,
273
+ times,
274
+ f0_up_key,
275
+ f0_method,
276
+ file_index,
277
+ # file_big_npy,
278
+ index_rate,
279
+ if_f0,
280
+ filter_radius,
281
+ tgt_sr,
282
+ resample_sr,
283
+ rms_mix_rate,
284
+ version,
285
+ protect,
286
+ f0_file=None,
287
+ ):
288
+ if (
289
+ file_index != ""
290
+ # and file_big_npy != ""
291
+ # and os.path.exists(file_big_npy) == True
292
+ and os.path.exists(file_index) == True
293
+ and index_rate != 0
294
+ ):
295
+ try:
296
+ index = faiss.read_index(file_index)
297
+ # big_npy = np.load(file_big_npy)
298
+ big_npy = index.reconstruct_n(0, index.ntotal)
299
+ except:
300
+ traceback.print_exc()
301
+ index = big_npy = None
302
+ else:
303
+ index = big_npy = None
304
+ audio = signal.filtfilt(bh, ah, audio)
305
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
306
+ opt_ts = []
307
+ if audio_pad.shape[0] > self.t_max:
308
+ audio_sum = np.zeros_like(audio)
309
+ for i in range(self.window):
310
+ audio_sum += audio_pad[i : i - self.window]
311
+ for t in range(self.t_center, audio.shape[0], self.t_center):
312
+ opt_ts.append(
313
+ t
314
+ - self.t_query
315
+ + np.where(
316
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
317
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
318
+ )[0][0]
319
+ )
320
+ s = 0
321
+ audio_opt = []
322
+ t = None
323
+ t1 = ttime()
324
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
325
+ p_len = audio_pad.shape[0] // self.window
326
+ inp_f0 = None
327
+ if hasattr(f0_file, "name") == True:
328
+ try:
329
+ with open(f0_file.name, "r") as f:
330
+ lines = f.read().strip("\n").split("\n")
331
+ inp_f0 = []
332
+ for line in lines:
333
+ inp_f0.append([float(i) for i in line.split(",")])
334
+ inp_f0 = np.array(inp_f0, dtype="float32")
335
+ except:
336
+ traceback.print_exc()
337
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
338
+ pitch, pitchf = None, None
339
+ if if_f0 == 1:
340
+ pitch, pitchf = self.get_f0(
341
+ input_audio_path,
342
+ audio_pad,
343
+ p_len,
344
+ f0_up_key,
345
+ f0_method,
346
+ filter_radius,
347
+ inp_f0,
348
+ )
349
+ pitch = pitch[:p_len]
350
+ pitchf = pitchf[:p_len]
351
+ if self.device == "mps":
352
+ pitchf = pitchf.astype(np.float32)
353
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
354
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
355
+ t2 = ttime()
356
+ times[1] += t2 - t1
357
+ for t in opt_ts:
358
+ t = t // self.window * self.window
359
+ if if_f0 == 1:
360
+ audio_opt.append(
361
+ self.vc(
362
+ model,
363
+ net_g,
364
+ sid,
365
+ audio_pad[s : t + self.t_pad2 + self.window],
366
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
367
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
368
+ times,
369
+ index,
370
+ big_npy,
371
+ index_rate,
372
+ version,
373
+ protect,
374
+ )[self.t_pad_tgt : -self.t_pad_tgt]
375
+ )
376
+ else:
377
+ audio_opt.append(
378
+ self.vc(
379
+ model,
380
+ net_g,
381
+ sid,
382
+ audio_pad[s : t + self.t_pad2 + self.window],
383
+ None,
384
+ None,
385
+ times,
386
+ index,
387
+ big_npy,
388
+ index_rate,
389
+ version,
390
+ protect,
391
+ )[self.t_pad_tgt : -self.t_pad_tgt]
392
+ )
393
+ s = t
394
+ if if_f0 == 1:
395
+ audio_opt.append(
396
+ self.vc(
397
+ model,
398
+ net_g,
399
+ sid,
400
+ audio_pad[t:],
401
+ pitch[:, t // self.window :] if t is not None else pitch,
402
+ pitchf[:, t // self.window :] if t is not None else pitchf,
403
+ times,
404
+ index,
405
+ big_npy,
406
+ index_rate,
407
+ version,
408
+ protect,
409
+ )[self.t_pad_tgt : -self.t_pad_tgt]
410
+ )
411
+ else:
412
+ audio_opt.append(
413
+ self.vc(
414
+ model,
415
+ net_g,
416
+ sid,
417
+ audio_pad[t:],
418
+ None,
419
+ None,
420
+ times,
421
+ index,
422
+ big_npy,
423
+ index_rate,
424
+ version,
425
+ protect,
426
+ )[self.t_pad_tgt : -self.t_pad_tgt]
427
+ )
428
+ audio_opt = np.concatenate(audio_opt)
429
+ if rms_mix_rate != 1:
430
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
431
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
432
+ audio_opt = librosa.resample(
433
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
434
+ )
435
+ audio_max = np.abs(audio_opt).max() / 0.99
436
+ max_int16 = 32768
437
+ if audio_max > 1:
438
+ max_int16 /= audio_max
439
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
440
+ del pitch, pitchf, sid
441
+ if torch.cuda.is_available():
442
+ torch.cuda.empty_cache()
443
+ return audio_opt