Spaces:
Sleeping
Sleeping
File size: 7,345 Bytes
50e2012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from transformer_lens import HookedTransformer
from sae_lens import SAE
import torch
if torch.backends.mps.is_available():
device = "mps"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
class Inference:
def __init__(self, model, pretrained_sae, layer):
self.layer = layer
if model == "gemma-2b":
self.sae_id = f"blocks.{layer}.hook_resid_post"
elif model == "gpt2-small":
print(f"using {model}")
self.sae_id = f"blocks.{0}.hook_resid_pre"
self.sampling_kwargs = dict(temperature=1.0, top_p=0.1, freq_penalty=1.0)
self.set_coeff(1)
self.set_model(model)
self.set_SAE(pretrained_sae)
def set_model(self, model):
self.model = HookedTransformer.from_pretrained(model, device = device)
def set_coeff(self, coeff):
self.coeff = coeff
def set_temperature(self, temperature):
self.sampling_kwargs['temperature'] = temperature
def set_steering_vector_prompt(self, prompt: str):
self.steering_vector_prompt = prompt
def set_SAE(self, sae_name):
sae, cfg_dict, _ = SAE.from_pretrained(
release = sae_name,
sae_id = self.sae_id,
device = device
)
self.sae = sae
self.cfg_dict = cfg_dict
def _get_sae_out_and_feature_activations(self):
# given the words in steering_vectore_prompt, the SAE predicts that the neurons(aka features) in activateCache will be activated
sv_logits, activationCache = self.model.run_with_cache(self.steering_vector_prompt, prepend_bos=True)
sv_feature_acts = self.sae.encode(activationCache[self.sae.cfg.hook_name])
# get top_k of 1
# self.sae_out = sae.decode(sv_feature_acts)
return self.sae.decode(sv_feature_acts), sv_feature_acts
def _hooked_generate(self, prompt_batch, fwd_hooks, seed=None, **kwargs):
if seed is not None:
torch.manual_seed(seed)
with self.model.hooks(fwd_hooks=fwd_hooks):
tokenized = self.model.to_tokens(prompt_batch)
result = self.model.generate(
stop_at_eos=False, # avoids a bug on MPS
input=tokenized,
max_new_tokens=50,
do_sample=True,
**kwargs)
return result
def _get_features(self, sv_feature_activations):
# return torch.topk(sv_feature_acts, 1).indices.tolist()
features = torch.topk(sv_feature_activations, 1).indices
print(f'features that align with the text prompt: {features}')
print("pump the features into the tool that gives you the words associated with each feature")
return features
def _get_steering_hook(self, feature, sae_out):
coeff = self.coeff
steering_vector = self.sae.W_dec[feature]
steering_vector = steering_vector[0]
def steering_hook(resid_pre, hook):
if resid_pre.shape[1] == 1:
return
position = sae_out.shape[1]
# using our steering vector and applying the coefficient
resid_pre[:, :position - 1, :] += coeff * steering_vector
return steering_hook
def _get_steering_hooks(self):
# TODO: refactor this. It works because sae_out.shape[1] = sv_feature_acts.shape[1] = len(features[0])
# you can manipulate views to retrieve hooks more cleanly
# and not use the seperate function _get_steering_hook()
sae_out, sv_feature_acts = self._get_sae_out_and_feature_activations()
features = self._get_features(sv_feature_acts)
steering_hooks = [self._get_steering_hook(feature, sae_out) for feature in features[0]]
return steering_hooks
def _run_generate(self, example_prompt, steering_on: bool):
self.model.reset_hooks()
steer_hooks = self._get_steering_hooks()
editing_hooks = [ (self.sae_id, steer_hook) for steer_hook in steer_hooks]
# editing_hooks = [(self.sae_id, steer_hook)]
# ^^change this to support steer_hooks being a list of steer_hooks
print(f"steering by {len(editing_hooks)} hooks")
if steering_on:
res = self._hooked_generate([example_prompt] * 3, editing_hooks, seed=None, **self.sampling_kwargs)
else:
tokenized = self.model.to_tokens([example_prompt])
res = self.model.generate(
stop_at_eos=False, # avoids a bug on MPS
input=tokenized,
max_new_tokens=50,
do_sample=True,
**self.sampling_kwargs)
# Print results, removing the ugly beginning of sequence token
res_str = self.model.to_string(res[:, 1:])
response = ("\n\n" + "-" * 80 + "\n\n").join(res_str)
print(response)
return response
def generate(self, message: str, steering_on: bool):
return self._run_generate(message, steering_on)
MODEL = "gemma-2b"
PRETRAINED_SAE = "gemma-2b-res-jb"
MODEL = "gpt2-small"
PRETRAINED_SAE = "gpt2-small-res-jb"
LAYER = 10
chatbot_model = Inference(MODEL,PRETRAINED_SAE, LAYER)
import time
import gradio as gr
default_image = "Hexter-Hackathon.png"
def slow_echo(message, history):
result = chatbot_model.generate(message, False)
for i in range(len(result)):
time.sleep(0.01)
yield result[: i + 1]
def slow_echo_steering(message, history):
result = chatbot_model.generate(message, True)
for i in range(len(result)):
time.sleep(0.01)
yield result[: i + 1]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("*STANDARD HEXTER BOT*")
with gr.Row():
chatbot = gr.ChatInterface(
slow_echo,
chatbot=gr.Chatbot(min_width=1000),
textbox=gr.Textbox(placeholder="Ask Hexter anything!", min_width=1000),
theme="soft",
cache_examples=False,
retry_btn=None,
clear_btn=None,
undo_btn=None,
)
with gr.Row():
gr.Markdown("*STEERED HEXTER BOT*")
with gr.Row():
chatbot_steered = gr.ChatInterface(
slow_echo_steering,
chatbot=gr.Chatbot(min_width=1000),
textbox=gr.Textbox(placeholder="Ask Hexter anything!", min_width=1000),
theme="soft",
cache_examples=False,
retry_btn=None,
clear_btn=None,
undo_btn=None,
)
with gr.Row():
steering_prompt = gr.Textbox(label="Steering prompt", value="Golden Gate Bridge")
with gr.Row():
coeff = gr.Slider(1, 1000, 300, label="Coefficient", info="Coefficient is..", interactive=True)
with gr.Row():
temp = gr.Slider(0, 5, 1, label="Temperature", info="Temperature is..", interactive=True)
# Set up an action when the sliders change
temp.change(chatbot_model.set_temperature, inputs=[temp], outputs=[])
coeff.change(chatbot_model.set_coeff, inputs=[coeff], outputs=[])
chatbot_model.set_steering_vector_prompt(steering_prompt)
steering_prompt.change(chatbot_model.set_steering_vector_prompt, inputs=[steering_prompt], outputs=[])
demo.queue()
demo.launch(debug=True)
if __name__ == "__main__":
demo.launch(allowed_paths=["/"])
|