SqlParser / app.py
LegendaryToe's picture
cp
ec6901a
raw
history blame
572 Bytes
import streamlit as st
from transformers import pipeline
# Load your model; this example uses the GPT-2 model for text generation.
generator = pipeline('text-generation', model='gpt2')
st.title('Hugging Face Model Integration')
# Text input
user_input = st.text_input("Type a sentence to complete", "Streamlit is ")
# Generate text button
if st.button('Generate'):
# Generate text
result = generator(user_input, max_length=50, num_return_sequences=1)
# Display the generated text
st.text_area("Generated Text", result[0]['generated_text'], height=150)