LegendaryToe commited on
Commit
1a2a575
·
1 Parent(s): cfe9d20
Files changed (1) hide show
  1. app.py +19 -11
app.py CHANGED
@@ -1,17 +1,25 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
- # Load your model; this example uses the GPT-2 model for text generation.
5
- generator = pipeline('text-generation', model='gpt2')
6
 
7
- st.title('Hugging Face Model Integration')
8
 
9
- # Text input
10
- user_input = st.text_input("Type a sentence to complete", "Streamlit is ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- # Generate text button
13
- if st.button('Generate'):
14
- # Generate text
15
- result = generator(user_input, max_length=50, num_return_sequences=1)
16
- # Display the generated text
17
- st.text_area("Generated Text", result[0]['generated_text'], height=150)
 
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
+ # Load the SQLCoder model
5
+ sql_generator = pipeline('text-generation', model='defog/sqlcoder-7b-2')
6
 
7
+ st.title('SQL Table Extractor')
8
 
9
+ # Text input for SQL query
10
+ user_sql = st.text_input("Enter your SQL statement", "SELECT * FROM my_table WHERE condition;")
11
+
12
+ # Button to parse SQL
13
+ if st.button('Extract Tables'):
14
+ # Generate SQL or parse directly
15
+ results = sql_generator(user_sql)
16
+ # Assuming results contain SQL, extract table names (this part may require custom logic based on output)
17
+ tables = extract_tables_from_sql(results)
18
+
19
+ # Display extracted table names
20
+ st.write('Extracted Tables:', tables)
21
+
22
+ def extract_tables_from_sql(sql):
23
+ # Dummy function: Implement logic to parse table names from SQL
24
+ return ["my_table"] # Example output
25