LegendaryToe commited on
Commit
5e6328b
·
1 Parent(s): 523a420
Files changed (1) hide show
  1. app.py +30 -11
app.py CHANGED
@@ -23,20 +23,39 @@
23
  # # Dummy function: Implement logic to parse table names from SQL
24
  # return ["my_table"] # Example output
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  import streamlit as st
27
  from transformers import pipeline
28
 
29
- # Load the NER model
30
- ner = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", grouped_entities=True)
 
31
 
32
- st.title('Hello World NER Parser')
33
 
34
  # User input for text
35
- user_input = st.text_area("Enter a sentence to parse for named entities:", "John Smith lives in San Francisco.")
36
-
37
- # Parse entities
38
- if st.button('Parse'):
39
- entities = ner(user_input)
40
- # Display extracted entities
41
- for entity in entities:
42
- st.write(f"Entity: {entity['word']}, Entity Type: {entity['entity_group']}")
 
23
  # # Dummy function: Implement logic to parse table names from SQL
24
  # return ["my_table"] # Example output
25
 
26
+ # import streamlit as st
27
+ # from transformers import pipeline
28
+
29
+ # # Load the NER model
30
+ # ner = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", grouped_entities=True)
31
+
32
+ # st.title('Hello World NER Parser')
33
+
34
+ # # User input for text
35
+ # user_input = st.text_area("Enter a sentence to parse for named entities:", "John Smith lives in San Francisco.")
36
+
37
+ # # Parse entities
38
+ # if st.button('Parse'):
39
+ # entities = ner(user_input)
40
+ # # Display extracted entities
41
+ # for entity in entities:
42
+ # st.write(f"Entity: {entity['word']}, Entity Type: {entity['entity_group']}")
43
+
44
+
45
  import streamlit as st
46
  from transformers import pipeline
47
 
48
+ # Load CodeBERT model as a feature extractor
49
+ # (Note: You may need to adjust the task if using CodeBERT for other specific purposes)
50
+ codebert = pipeline("feature-extraction", model="microsoft/codebert-base")
51
 
52
+ st.title('CodeBERT Feature Extractor')
53
 
54
  # User input for text
55
+ user_input = st.text_area("Enter code or text to extract features:", "SELECT * FROM users;")
56
+
57
+ # Extract features
58
+ if st.button('Extract Features'):
59
+ features = codebert(user_input)
60
+ # Display extracted features (example: show size of feature vector for demonstration)
61
+ st.write('Number of features extracted:', len(features[0][0]))