Spaces:
Sleeping
Sleeping
File size: 21,354 Bytes
d16b52d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
#! fork: https://github.com/NVIDIA/TensorRT/blob/main/demo/Diffusion/models.py
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
import onnx
import onnx_graphsurgeon as gs
import torch
from onnx import shape_inference
from polygraphy.backend.onnx.loader import fold_constants
class Optimizer:
def __init__(self, onnx_path, verbose=False):
self.graph = gs.import_onnx(onnx.load(onnx_path))
self.verbose = verbose
def info(self, prefix):
if self.verbose:
print(
f"{prefix} .. {len(self.graph.nodes)} nodes, {len(self.graph.tensors().keys())} tensors, {len(self.graph.inputs)} inputs, {len(self.graph.outputs)} outputs"
)
def cleanup(self, return_onnx=False):
self.graph.cleanup().toposort()
if return_onnx:
return gs.export_onnx(self.graph)
def select_outputs(self, keep, names=None):
self.graph.outputs = [self.graph.outputs[o] for o in keep]
if names:
for i, name in enumerate(names):
self.graph.outputs[i].name = name
def fold_constants(self, return_onnx=False):
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
def infer_shapes(self, return_onnx=False):
onnx_graph = gs.export_onnx(self.graph)
if onnx_graph.ByteSize() > 2147483648:
raise TypeError(f"ERROR: model size exceeds supported 2GB limit, {onnx_graph.ByteSize() / 2147483648}")
else:
onnx_graph = shape_inference.infer_shapes(onnx_graph)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
def infer_shapes_with_external(self, save_path, return_onnx=False):
# https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md#running-shape-inference-on-an-onnx-model
onnx_graph = gs.export_onnx(self.graph)
onnx.save_model(
onnx_graph,
save_path,
save_as_external_data=True,
all_tensors_to_one_file=False,
size_threshold=1024,
)
shape_inference.infer_shapes_path(save_path, save_path)
self.graph = gs.import_onnx(onnx.load(save_path))
if return_onnx:
return onnx.load(save_path)
class BaseModel:
def __init__(
self,
fp16=False,
device="cuda",
verbose=True,
max_batch_size=16,
min_batch_size=1,
embedding_dim=768,
text_maxlen=77,
):
self.name = "SD Model"
self.fp16 = fp16
self.device = device
self.verbose = verbose
self.min_batch = min_batch_size
self.max_batch = max_batch_size
self.min_image_shape = 256 # min image resolution: 256x256
self.max_image_shape = 1024 # max image resolution: 1024x1024
self.min_latent_shape = self.min_image_shape // 8
self.max_latent_shape = self.max_image_shape // 8
self.embedding_dim = embedding_dim
self.text_maxlen = text_maxlen
def get_model(self):
pass
def get_input_names(self):
pass
def get_output_names(self):
pass
def get_dynamic_axes(self):
return None
def get_sample_input(self, batch_size, image_height, image_width):
pass
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
return None
def get_shape_dict(self, batch_size, image_height, image_width):
return None
def optimize(self, onnx_path, onnx_opt_path):
opt = Optimizer(onnx_path, verbose=self.verbose)
opt.info(self.name + ": original")
opt.cleanup()
opt.info(self.name + ": cleanup")
opt.fold_constants()
opt.info(self.name + ": fold constants")
opt.infer_shapes()
opt.info(self.name + ": shape inference")
onnx_opt_graph = opt.cleanup(return_onnx=True)
opt.info(self.name + ": finished")
onnx.save(onnx_opt_graph, onnx_opt_path)
opt.info(self.name + f": saved to {onnx_opt_path}")
del onnx_opt_graph
gc.collect()
torch.cuda.empty_cache()
def check_dims(self, batch_size, image_height, image_width):
assert batch_size >= self.min_batch and batch_size <= self.max_batch
assert image_height % 8 == 0 or image_width % 8 == 0
latent_height = image_height // 8
latent_width = image_width // 8
assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape
assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape
return (latent_height, latent_width)
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
min_batch = batch_size if static_batch else self.min_batch
max_batch = batch_size if static_batch else self.max_batch
latent_height = image_height // 8
latent_width = image_width // 8
min_image_height = image_height if static_shape else self.min_image_shape
max_image_height = image_height if static_shape else self.max_image_shape
min_image_width = image_width if static_shape else self.min_image_shape
max_image_width = image_width if static_shape else self.max_image_shape
min_latent_height = latent_height if static_shape else self.min_latent_shape
max_latent_height = latent_height if static_shape else self.max_latent_shape
min_latent_width = latent_width if static_shape else self.min_latent_shape
max_latent_width = latent_width if static_shape else self.max_latent_shape
return (
min_batch,
max_batch,
min_image_height,
max_image_height,
min_image_width,
max_image_width,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
)
class CLIP(BaseModel):
def __init__(self, device, max_batch_size, embedding_dim, min_batch_size=1):
super(CLIP, self).__init__(
device=device,
max_batch_size=max_batch_size,
min_batch_size=min_batch_size,
embedding_dim=embedding_dim,
)
self.name = "CLIP"
def get_input_names(self):
return ["input_ids"]
def get_output_names(self):
return ["text_embeddings", "pooler_output"]
def get_dynamic_axes(self):
return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
self.check_dims(batch_size, image_height, image_width)
min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims(
batch_size, image_height, image_width, static_batch, static_shape
)
return {
"input_ids": [
(min_batch, self.text_maxlen),
(batch_size, self.text_maxlen),
(max_batch, self.text_maxlen),
]
}
def get_shape_dict(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return {
"input_ids": (batch_size, self.text_maxlen),
"text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim),
}
def get_sample_input(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device)
def optimize(self, onnx_path, onnx_opt_path):
opt = Optimizer(onnx_path)
opt.info(self.name + ": original")
opt.select_outputs([0]) # delete graph output#1
opt.cleanup()
opt.info(self.name + ": remove output[1]")
opt.fold_constants()
opt.info(self.name + ": fold constants")
opt.infer_shapes()
opt.info(self.name + ": shape inference")
opt.select_outputs([0], names=["text_embeddings"]) # rename network output
opt.info(self.name + ": remove output[0]")
onnx_opt_graph = opt.cleanup(return_onnx=True)
opt.info(self.name + ": finished")
onnx.save(onnx_opt_graph, onnx_opt_path)
opt.info(self.name + f": saved to {onnx_opt_path}")
del onnx_opt_graph
gc.collect()
torch.cuda.empty_cache()
class InflatedUNetDepth(BaseModel):
def __init__(
self,
fp16=False,
device="cuda",
max_batch_size=16,
min_batch_size=1,
embedding_dim=768,
text_maxlen=77,
unet_dim=4,
kv_cache_list=None,
):
super().__init__(
fp16=fp16,
device=device,
max_batch_size=max_batch_size,
min_batch_size=min_batch_size,
embedding_dim=embedding_dim,
text_maxlen=text_maxlen,
)
self.kv_cache_list = kv_cache_list
self.unet_dim = unet_dim
self.name = "UNet"
self.streaming_length = 1
self.window_size = 16
def get_input_names(self):
input_list = ["sample", "timestep", "encoder_hidden_states", "temporal_attention_mask", "depth_sample"]
input_list += [f"kv_cache_{i}" for i in range(len(self.kv_cache_list))]
input_list += ["pe_idx", "update_idx"]
return input_list
def get_output_names(self):
output_list = ["latent"]
output_list += [f"kv_cache_out_{i}" for i in range(len(self.kv_cache_list))]
return output_list
def get_dynamic_axes(self):
# NOTE: disable dynamic axes
return {}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
input_profile = {
"sample": [
(min_batch, self.unet_dim, self.streaming_length, min_latent_height, min_latent_width),
(batch_size, self.unet_dim, self.streaming_length, latent_height, latent_width),
(max_batch, self.unet_dim, self.streaming_length, max_latent_height, max_latent_width),
],
"timestep": [(min_batch,), (batch_size,), (max_batch,)],
"encoder_hidden_states": [
(min_batch, self.text_maxlen, self.embedding_dim),
(batch_size, self.text_maxlen, self.embedding_dim),
(max_batch, self.text_maxlen, self.embedding_dim),
],
"temporal_attention_mask": [
(min_batch, self.window_size),
(batch_size, self.window_size),
(max_batch, self.window_size),
],
"depth_sample": [
(min_batch, self.unet_dim, self.streaming_length, min_latent_height, min_latent_width),
(batch_size, self.unet_dim, self.streaming_length, latent_height, latent_width),
(max_batch, self.unet_dim, self.streaming_length, max_latent_height, max_latent_width),
],
}
for idx, tensor in enumerate(self.kv_cache_list):
input_profile[f"kv_cache_{idx}"] = [tuple(tensor.shape)] * 3
input_profile["pe_idx"] = [
(min_batch, self.window_size),
(batch_size, self.window_size),
(max_batch, self.window_size),
]
input_profile["update_idx"] = [
(min_batch,),
(batch_size,),
(max_batch,),
]
return input_profile
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
dtype = torch.float16 if self.fp16 else torch.float32
attn_mask = torch.zeros((batch_size, self.window_size), dtype=torch.bool, device=self.device)
attn_mask[:, :8] = True
attn_mask[0, -1] = True
attn_bias = torch.zeros_like(attn_mask, dtype=dtype, device=self.device)
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
pe_idx = torch.arange(self.window_size).unsqueeze(0).repeat(batch_size, 1).cuda()
update_idx = torch.ones(batch_size, dtype=torch.int64).cuda() * 8
update_idx[1] = 8 + 1
return (
torch.randn(
batch_size,
self.unet_dim,
self.streaming_length,
latent_height,
latent_width,
dtype=dtype,
device=self.device,
),
torch.ones((batch_size,), dtype=dtype, device=self.device),
torch.randn(batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device),
attn_bias,
torch.randn(
batch_size,
self.unet_dim,
self.streaming_length,
latent_height,
latent_width,
dtype=dtype,
device=self.device,
),
self.kv_cache_list,
pe_idx,
update_idx,
)
def optimize(self, onnx_path, onnx_opt_path):
"""Onnx graph optimization function for model with external data."""
opt = Optimizer(onnx_path, verbose=self.verbose)
opt.info(self.name + ": original")
opt.cleanup()
opt.info(self.name + ": cleanup")
opt.fold_constants()
opt.info(self.name + ": fold constants")
opt.infer_shapes_with_external(onnx_opt_path)
opt.info(self.name + ": shape inference")
onnx_opt_graph = opt.cleanup(return_onnx=True)
opt.info(self.name + ": finished")
onnx.save(
onnx_opt_graph,
onnx_opt_path,
save_as_external_data=True,
all_tensors_to_one_file=False,
size_threshold=1024,
)
opt.info(self.name + f": saved to {onnx_opt_path}")
del onnx_opt_graph
gc.collect()
torch.cuda.empty_cache()
class Midas(BaseModel):
def __init__(
self,
fp16=False,
device="cuda",
max_batch_size=16,
min_batch_size=1,
embedding_dim=768,
text_maxlen=77,
):
super().__init__(
fp16=fp16,
device=device,
max_batch_size=max_batch_size,
min_batch_size=min_batch_size,
embedding_dim=embedding_dim,
text_maxlen=text_maxlen,
)
self.img_dim = 3
self.name = "midas"
def get_input_names(self):
return ["images"]
def get_output_names(self):
return ["depth_map"]
def get_dynamic_axes(self):
return {
"images": {0: "F"},
"depth_map": {0: "F"},
}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"images": [
(min_batch, self.img_dim, image_height, image_width),
(batch_size, self.img_dim, image_height, image_width),
(max_batch, self.img_dim, image_height, image_width),
],
}
def get_sample_input(self, batch_size, image_height, image_width):
dtype = torch.float16 if self.fp16 else torch.float32
return torch.randn(batch_size, self.img_dim, image_height, image_width, dtype=dtype, device=self.device)
class VAE(BaseModel):
def __init__(self, device, max_batch_size, min_batch_size=1):
super(VAE, self).__init__(
device=device,
max_batch_size=max_batch_size,
min_batch_size=min_batch_size,
embedding_dim=None,
)
self.name = "VAE decoder"
def get_input_names(self):
return ["latent"]
def get_output_names(self):
return ["images"]
def get_dynamic_axes(self):
return {
"latent": {0: "B", 2: "H", 3: "W"},
"images": {0: "B", 2: "8H", 3: "8W"},
}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"latent": [
(min_batch, 4, min_latent_height, min_latent_width),
(batch_size, 4, latent_height, latent_width),
(max_batch, 4, max_latent_height, max_latent_width),
]
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"latent": (batch_size, 4, latent_height, latent_width),
"images": (batch_size, 3, image_height, image_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return torch.randn(
batch_size,
4,
latent_height,
latent_width,
dtype=torch.float32,
device=self.device,
)
class VAEEncoder(BaseModel):
def __init__(self, device, max_batch_size, min_batch_size=1):
super(VAEEncoder, self).__init__(
device=device,
max_batch_size=max_batch_size,
min_batch_size=min_batch_size,
embedding_dim=None,
)
self.name = "VAE encoder"
def get_input_names(self):
return ["images"]
def get_output_names(self):
return ["latent"]
def get_dynamic_axes(self):
return {
"images": {0: "B", 2: "8H", 3: "8W"},
"latent": {0: "B", 2: "H", 3: "W"},
}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
assert batch_size >= self.min_batch and batch_size <= self.max_batch
min_batch = batch_size if static_batch else self.min_batch
max_batch = batch_size if static_batch else self.max_batch
self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
min_image_height,
max_image_height,
min_image_width,
max_image_width,
_,
_,
_,
_,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"images": [
(min_batch, 3, min_image_height, min_image_width),
(batch_size, 3, image_height, image_width),
(max_batch, 3, max_image_height, max_image_width),
],
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"images": (batch_size, 3, image_height, image_width),
"latent": (batch_size, 4, latent_height, latent_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return torch.randn(
batch_size,
3,
image_height,
image_width,
dtype=torch.float32,
device=self.device,
)
|