Spaces:
Sleeping
Sleeping
import os | |
import os.path as osp | |
import imageio | |
import numpy as np | |
import torch | |
import torchvision | |
from einops import rearrange | |
from PIL import Image | |
def read_video_frames(folder: str, height=None, width=None): | |
""" | |
Read video frames from the given folder. | |
Output: | |
frames, in [0, 255], uint8, THWC | |
""" | |
_SUPPORTED_EXTENSIONS = [".png", ".jpg", ".jpeg"] | |
frames = [f for f in os.listdir(folder) if osp.splitext(f)[1] in _SUPPORTED_EXTENSIONS] | |
# sort frames | |
sorted_frames = sorted(frames, key=lambda x: int(osp.splitext(x)[0])) | |
sorted_frames = [osp.join(folder, f) for f in sorted_frames] | |
if height is not None and width is not None: | |
sorted_frames = [np.array(Image.open(f).resize((width, height))) for f in sorted_frames] | |
else: | |
sorted_frames = [np.array(Image.open(f)) for f in sorted_frames] | |
sorted_frames = torch.stack([torch.from_numpy(f) for f in sorted_frames], dim=0) | |
return sorted_frames | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(x) | |
parent_dir = os.path.dirname(path) | |
if parent_dir != "": | |
os.makedirs(parent_dir, exist_ok=True) | |
imageio.mimsave(path, outputs, fps=fps, loop=0) | |