Spaces:
Sleeping
Sleeping
// includes for OpenCV >= 3.x | |
// OpenCV includes for OpenCV 2.x | |
static const std::string OPENCV_WINDOW = "Image window"; | |
class Midas | |
{ | |
ros::NodeHandle nh_; | |
image_transport::ImageTransport it_; | |
image_transport::Subscriber image_sub_; | |
image_transport::Publisher image_pub_; | |
torch::jit::script::Module module; | |
torch::Device device; | |
auto ToTensor(cv::Mat img, bool show_output = false, bool unsqueeze = false, int unsqueeze_dim = 0) | |
{ | |
//std::cout << "image shape: " << img.size() << std::endl; | |
at::Tensor tensor_image = torch::from_blob(img.data, { img.rows, img.cols, 3 }, at::kByte); | |
if (unsqueeze) | |
{ | |
tensor_image.unsqueeze_(unsqueeze_dim); | |
//std::cout << "tensors new shape: " << tensor_image.sizes() << std::endl; | |
} | |
if (show_output) | |
{ | |
std::cout << tensor_image.slice(2, 0, 1) << std::endl; | |
} | |
//std::cout << "tenor shape: " << tensor_image.sizes() << std::endl; | |
return tensor_image; | |
} | |
auto ToInput(at::Tensor tensor_image) | |
{ | |
// Create a vector of inputs. | |
return std::vector<torch::jit::IValue>{tensor_image}; | |
} | |
auto ToCvImage(at::Tensor tensor, int cv_type = CV_8UC3) | |
{ | |
int width = tensor.sizes()[0]; | |
int height = tensor.sizes()[1]; | |
try | |
{ | |
cv::Mat output_mat; | |
if (cv_type == CV_8UC4 || cv_type == CV_8UC3 || cv_type == CV_8UC2 || cv_type == CV_8UC1) { | |
cv::Mat cv_image(cv::Size{ height, width }, cv_type, tensor.data_ptr<uchar>()); | |
output_mat = cv_image; | |
} | |
else if (cv_type == CV_32FC4 || cv_type == CV_32FC3 || cv_type == CV_32FC2 || cv_type == CV_32FC1) { | |
cv::Mat cv_image(cv::Size{ height, width }, cv_type, tensor.data_ptr<float>()); | |
output_mat = cv_image; | |
} | |
else if (cv_type == CV_64FC4 || cv_type == CV_64FC3 || cv_type == CV_64FC2 || cv_type == CV_64FC1) { | |
cv::Mat cv_image(cv::Size{ height, width }, cv_type, tensor.data_ptr<double>()); | |
output_mat = cv_image; | |
} | |
//show_image(output_mat, "converted image from tensor"); | |
return output_mat.clone(); | |
} | |
catch (const c10::Error& e) | |
{ | |
std::cout << "an error has occured : " << e.msg() << std::endl; | |
} | |
return cv::Mat(height, width, CV_8UC3); | |
} | |
std::string input_topic, output_topic, model_name; | |
bool out_orig_size; | |
int net_width, net_height; | |
torch::NoGradGuard guard; | |
at::Tensor mean, std; | |
at::Tensor output, tensor; | |
public: | |
Midas() | |
: nh_(), it_(nh_), device(torch::Device(torch::kCPU)) | |
{ | |
ros::param::param<std::string>("~input_topic", input_topic, "image_topic"); | |
ros::param::param<std::string>("~output_topic", output_topic, "midas_topic"); | |
ros::param::param<std::string>("~model_name", model_name, "model-small-traced.pt"); | |
ros::param::param<bool>("~out_orig_size", out_orig_size, true); | |
ros::param::param<int>("~net_width", net_width, 256); | |
ros::param::param<int>("~net_height", net_height, 256); | |
std::cout << ", input_topic = " << input_topic << | |
", output_topic = " << output_topic << | |
", model_name = " << model_name << | |
", out_orig_size = " << out_orig_size << | |
", net_width = " << net_width << | |
", net_height = " << net_height << | |
std::endl; | |
// Subscrive to input video feed and publish output video feed | |
image_sub_ = it_.subscribe(input_topic, 1, &Midas::imageCb, this); | |
image_pub_ = it_.advertise(output_topic, 1); | |
std::cout << "Try to load torchscript model \n"; | |
try { | |
// Deserialize the ScriptModule from a file using torch::jit::load(). | |
module = torch::jit::load(model_name); | |
} | |
catch (const c10::Error& e) { | |
std::cerr << "error loading the model\n"; | |
exit(0); | |
} | |
std::cout << "ok\n"; | |
try { | |
module.eval(); | |
torch::jit::getProfilingMode() = false; | |
torch::jit::setGraphExecutorOptimize(true); | |
mean = torch::tensor({ 0.485, 0.456, 0.406 }); | |
std = torch::tensor({ 0.229, 0.224, 0.225 }); | |
if (torch::hasCUDA()) { | |
std::cout << "cuda is available" << std::endl; | |
at::globalContext().setBenchmarkCuDNN(true); | |
device = torch::Device(torch::kCUDA); | |
module.to(device); | |
mean = mean.to(device); | |
std = std.to(device); | |
} | |
} | |
catch (const c10::Error& e) | |
{ | |
std::cerr << " module initialization: " << e.msg() << std::endl; | |
} | |
} | |
~Midas() | |
{ | |
} | |
void imageCb(const sensor_msgs::ImageConstPtr& msg) | |
{ | |
cv_bridge::CvImagePtr cv_ptr; | |
try | |
{ | |
// sensor_msgs::Image to cv::Mat | |
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::RGB8); | |
} | |
catch (cv_bridge::Exception& e) | |
{ | |
ROS_ERROR("cv_bridge exception: %s", e.what()); | |
return; | |
} | |
// pre-processing | |
auto tensor_cpu = ToTensor(cv_ptr->image); // OpenCV-image -> Libtorch-tensor | |
try { | |
tensor = tensor_cpu.to(device); // move to device (CPU or GPU) | |
tensor = tensor.toType(c10::kFloat); | |
tensor = tensor.permute({ 2, 0, 1 }); // HWC -> CHW | |
tensor = tensor.unsqueeze(0); | |
tensor = at::upsample_bilinear2d(tensor, { net_height, net_width }, true); // resize | |
tensor = tensor.squeeze(0); | |
tensor = tensor.permute({ 1, 2, 0 }); // CHW -> HWC | |
tensor = tensor.div(255).sub(mean).div(std); // normalization | |
tensor = tensor.permute({ 2, 0, 1 }); // HWC -> CHW | |
tensor.unsqueeze_(0); // CHW -> NCHW | |
} | |
catch (const c10::Error& e) | |
{ | |
std::cerr << " pre-processing exception: " << e.msg() << std::endl; | |
return; | |
} | |
auto input_to_net = ToInput(tensor); // input to the network | |
// inference | |
output; | |
try { | |
output = module.forward(input_to_net).toTensor(); // run inference | |
} | |
catch (const c10::Error& e) | |
{ | |
std::cerr << " module.forward() exception: " << e.msg() << std::endl; | |
return; | |
} | |
output = output.detach().to(torch::kF32); | |
// move to CPU temporary | |
at::Tensor output_tmp = output; | |
output_tmp = output_tmp.to(torch::kCPU); | |
// normalization | |
float min_val = std::numeric_limits<float>::max(); | |
float max_val = std::numeric_limits<float>::min(); | |
for (int i = 0; i < net_width * net_height; ++i) { | |
float val = output_tmp.data_ptr<float>()[i]; | |
if (min_val > val) min_val = val; | |
if (max_val < val) max_val = val; | |
} | |
float range_val = max_val - min_val; | |
output = output.sub(min_val).div(range_val).mul(255.0F).clamp(0, 255).to(torch::kF32); // .to(torch::kU8); | |
// resize to the original size if required | |
if (out_orig_size) { | |
try { | |
output = at::upsample_bilinear2d(output.unsqueeze(0), { cv_ptr->image.size().height, cv_ptr->image.size().width }, true); | |
output = output.squeeze(0); | |
} | |
catch (const c10::Error& e) | |
{ | |
std::cout << " upsample_bilinear2d() exception: " << e.msg() << std::endl; | |
return; | |
} | |
} | |
output = output.permute({ 1, 2, 0 }).to(torch::kCPU); | |
int cv_type = CV_32FC1; // CV_8UC1; | |
auto cv_img = ToCvImage(output, cv_type); | |
sensor_msgs::Image img_msg; | |
try { | |
// cv::Mat -> sensor_msgs::Image | |
std_msgs::Header header; // empty header | |
header.seq = 0; // user defined counter | |
header.stamp = ros::Time::now();// time | |
//cv_bridge::CvImage img_bridge = cv_bridge::CvImage(header, sensor_msgs::image_encodings::MONO8, cv_img); | |
cv_bridge::CvImage img_bridge = cv_bridge::CvImage(header, sensor_msgs::image_encodings::TYPE_32FC1, cv_img); | |
img_bridge.toImageMsg(img_msg); // cv_bridge -> sensor_msgs::Image | |
} | |
catch (cv_bridge::Exception& e) | |
{ | |
ROS_ERROR("cv_bridge exception: %s", e.what()); | |
return; | |
} | |
// Output modified video stream | |
image_pub_.publish(img_msg); | |
} | |
}; | |
int main(int argc, char** argv) | |
{ | |
ros::init(argc, argv, "midas", ros::init_options::AnonymousName); | |
Midas ic; | |
ros::spin(); | |
return 0; | |
} |