rag_time / backend /semantic_search.py
LevGervich's picture
Fix imports
63fede5
import typing
import lancedb
import os
import gradio as gr
from sentence_transformers import SentenceTransformer
from FlagEmbedding import FlagReranker
from functools import wraps
import time
def timeit(func):
@wraps(func)
def timeit_wrapper(*args, **kwargs):
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
total_time = end_time - start_time
print(f'Function {func.__name__}{args} {kwargs} Took {total_time:.4f} seconds')
return result
return timeit_wrapper
db = lancedb.connect(".lancedb")
TABLE = db.open_table(os.getenv("TABLE_NAME"))
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector")
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text")
TOP_K = int(os.getenv("TOP_K", 5))
TOP_K_RERANK = int(os.getenv("TOP_K_RERANK", 2))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32))
RERANK_MODEL = os.getenv("RERANK_MODEL", "BAAI/bge-reranker-large")
retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
reranker = FlagReranker(RERANK_MODEL,
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
def rerank(query: str, documents: typing.List[str], k: int):
data_for_reranker = [(query, document) for document in documents]
scores = reranker.compute_score(data_for_reranker, batch_size=BATCH_SIZE)
indices_scores = [(i, score) for (i, score) in enumerate(scores)]
indices_scores.sort(key=lambda x: x[1], reverse=True)
best_indices = list(map(lambda x: x[0], indices_scores[:k]))
return [documents[i] for i in best_indices]
@timeit
def retrieve(query, k):
query_vec = retriever.encode(query)
try:
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list()
documents = [doc[TEXT_COLUMN] for doc in documents]
documents = rerank(query, documents, TOP_K_RERANK)
return documents
except Exception as e:
raise gr.Error(str(e))
if __name__ == "__main__":
retrieve("What is RAG?", TOP_K)