Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,467 Bytes
edebe10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Xueyan Zou ([email protected])
# --------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import numpy as np
import itertools
import logging
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import torch.utils.data
import torch.utils.data as torchdata
import detectron2.utils.comm as comm
from detectron2.data.build import (
build_batch_data_loader,
load_proposals_into_dataset,
trivial_batch_collator,
)
from detectron2.data import MetadataCatalog
from detectron2.data.catalog import DatasetCatalog
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.samplers import InferenceSampler, TrainingSampler
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
DatasetEvaluators,
LVISEvaluator,
verify_results,
)
from fvcore.common.config import CfgNode
from .dataset_mappers import *
from .evaluation import (InstanceSegEvaluator,
ClassificationEvaluator,
SemSegEvaluator,
RetrievalEvaluator,
#CaptioningEvaluator,
COCOPanopticEvaluator,
GroundingEvaluator,
InteractiveEvaluator,
)
from modeling.utils import configurable
from utilities.distributed import get_world_size
class JointLoader(torchdata.IterableDataset):
"""
Randomly sampple from one of the dataloaders per worker in each iteration.
The sampling probability is determined by the size of each dataset.
All examples from one worker (GPU) are from the same dataset in the iteration.
Mixing is achieved through multiple workers (GPUs).
"""
def __init__(self, loaders, key_dataset, sample_prob, mixing_level):
dataset_names = []
for key, loader in loaders.items():
name = "{}".format(key.split('_')[0])
setattr(self, name, loader)
dataset_names += [name]
self.dataset_names = dataset_names
self.key_dataset = key_dataset
if sample_prob == 'prop':
self.sample_prob = [len(getattr(self, key)) for key in self.dataset_names]
elif sample_prob == 'equal':
self.sample_prob = [1 for key in self.dataset_names]
elif sample_prob == 'sqrt':
self.sample_prob = [np.sqrt(len(getattr(self, key))) for key in self.dataset_names]
self.sample_prob = [p/sum(self.sample_prob) for p in self.sample_prob]
self.mixing_level = mixing_level
# Not sure how expensive `len(getattr(self, name))` is. computing this once and cache.
# this assumes the len of the underlying data loaders do not change.
self._len = sum(len(getattr(self, name)) for name in self.dataset_names)
def __iter__(self):
# Reset iterators at the start of each new epoch
self.iterators = {name: iter(getattr(self, name)) for name in self.dataset_names}
self._count = 0
return self
def __next__(self):
while self._count < self._len:
# Randomly select a dataloader
name = np.random.choice(self.dataset_names, size=None, replace=False, p=self.sample_prob)
iterator = self.iterators[name]
try:
# Get next batch from the selected dataloader
self._count += 1
return next(iterator)
except StopIteration:
# If the selected dataloader is exhausted, reinitialize it
self.iterators[name] = iter(getattr(self, name))
raise StopIteration
def __len__(self):
return self._len
def filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names):
"""
Filter out images with none annotations or only crowd annotations
(i.e., images without non-crowd annotations).
A common training-time preprocessing on COCO dataset.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
Returns:
list[dict]: the same format, but filtered.
"""
num_before = len(dataset_dicts)
def valid(anns):
for ann in anns:
if isinstance(ann, list):
for instance in ann:
if instance.get("iscrowd", 0) == 0:
return True
else:
if ann.get("iscrowd", 0) == 0:
return True
return False
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with no usable annotations. {} images left.".format(
num_before - num_after, num_after
)
)
return dataset_dicts
def get_detection_dataset_dicts(
dataset_names, filter_empty=True, proposal_files=None
):
"""
Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation.
Args:
dataset_names (str or list[str]): a dataset name or a list of dataset names
filter_empty (bool): whether to filter out images without instance annotations
proposal_files (list[str]): if given, a list of object proposal files
that match each dataset in `dataset_names`.
Returns:
list[dict]: a list of dicts following the standard dataset dict format.
"""
if isinstance(dataset_names, str):
dataset_names = [dataset_names]
assert len(dataset_names)
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
if proposal_files is not None:
assert len(dataset_names) == len(proposal_files)
# load precomputed proposals from proposal files
dataset_dicts = [
load_proposals_into_dataset(dataset_i_dicts, proposal_file)
for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
]
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names)
assert len(dataset_dicts), "No valid data found in {}.".format(",".join(dataset_names))
return dataset_dicts
def _test_loader_from_config(cfg, dataset_name, mapper=None):
"""
Uses the given `dataset_name` argument (instead of the names in cfg), because the
standard practice is to evaluate each test set individually (not combining them).
"""
if isinstance(dataset_name, str):
dataset_name = [dataset_name]
dataset = get_detection_dataset_dicts(
dataset_name,
filter_empty=False,
proposal_files=None,
)
if mapper is None:
mapper_cfg = CfgNode({'INPUT': cfg['INPUT'], 'MODEL': cfg['MODEL'], 'DATASETS': cfg['DATASETS']})
mapper = DatasetMapper(mapper_cfg, False)
assert cfg['TEST']['BATCH_SIZE_TOTAL'] % get_world_size() == 0, "Evaluation total batchsize is not divisible by gpu number"
#batch_size = cfg['TEST']['BATCH_SIZE_TOTAL'] // get_world_size()
batch_size = 1
return {
"dataset": dataset,
"mapper": mapper,
"num_workers": cfg['DATALOADER']['NUM_WORKERS'],
"sampler": InferenceSampler(len(dataset)),
"batch_size": batch_size,
}
@configurable(from_config=_test_loader_from_config)
def build_detection_test_loader(
dataset: Union[List[Any], torchdata.Dataset],
*,
mapper: Callable[[Dict[str, Any]], Any],
sampler: Optional[torchdata.Sampler] = None,
batch_size: int = 1,
num_workers: int = 0,
collate_fn: Optional[Callable[[List[Any]], Any]] = None,
) -> torchdata.DataLoader:
"""
Similar to `build_detection_train_loader`, with default batch size = 1,
and sampler = :class:`InferenceSampler`. This sampler coordinates all workers
to produce the exact set of all samples.
Args:
dataset: a list of dataset dicts,
or a pytorch dataset (either map-style or iterable). They can be obtained
by using :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper: a callable which takes a sample (dict) from dataset
and returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``.
sampler: a sampler that produces
indices to be applied on ``dataset``. Default to :class:`InferenceSampler`,
which splits the dataset across all workers. Sampler must be None
if `dataset` is iterable.
batch_size: the batch size of the data loader to be created.
Default to 1 image per worker since this is the standard when reporting
inference time in papers.
num_workers: number of parallel data loading workers
collate_fn: same as the argument of `torch.utils.data.DataLoader`.
Defaults to do no collation and return a list of data.
Returns:
DataLoader: a torch DataLoader, that loads the given detection
dataset, with test-time transformation and batching.
Examples:
::
data_loader = build_detection_test_loader(
DatasetRegistry.get("my_test"),
mapper=DatasetMapper(...))
# or, instantiate with a CfgNode:
data_loader = build_detection_test_loader(cfg, "my_test")
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if isinstance(dataset, torchdata.IterableDataset):
assert sampler is None, "sampler must be None if dataset is IterableDataset"
else:
if sampler is None:
sampler = InferenceSampler(len(dataset))
return torchdata.DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
drop_last=False,
num_workers=num_workers,
collate_fn=trivial_batch_collator if collate_fn is None else collate_fn,
)
def _train_loader_from_config(cfg, dataset_name, mapper, *, dataset=None, sampler=None):
cfg_datasets = cfg['DATASETS']
cfg_dataloader = cfg['DATALOADER']
if dataset is None:
dataset = get_detection_dataset_dicts(
dataset_name,
filter_empty=cfg_dataloader['FILTER_EMPTY_ANNOTATIONS'],
proposal_files=cfg_datasets['PROPOSAL_FILES_TRAIN'] if cfg_dataloader['LOAD_PROPOSALS'] else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, True)
if sampler is None:
sampler_name = cfg_dataloader['SAMPLER_TRAIN']
logger = logging.getLogger(__name__)
logger.info("Using training sampler {}".format(sampler_name))
sampler = TrainingSampler(len(dataset))
return {
"dataset": dataset,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg['TRAIN']['BATCH_SIZE_TOTAL'],
"aspect_ratio_grouping": cfg_dataloader['ASPECT_RATIO_GROUPING'],
"num_workers": cfg_dataloader['NUM_WORKERS'],
}
@configurable(from_config=_train_loader_from_config)
def build_detection_train_loader(
dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0
):
"""
Build a dataloader for object detection with some default features.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset and
returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``.
sampler (torch.utils.data.sampler.Sampler or None): a sampler that
produces indices to be applied on ``dataset``.
Default to :class:`TrainingSampler`, which coordinates a random shuffle
sequence across all workers.
total_batch_size (int): total batch size across all workers. Batching
simply puts data into a list.
aspect_ratio_grouping (bool): whether to group images with similar
aspect ratio for efficiency. When enabled, it requires each
element in dataset be a dict with keys "width" and "height".
num_workers (int): number of parallel data loading workers
Returns:
torch.utils.data.DataLoader: a dataloader. Each output from it is a
``list[mapped_element]`` of length ``total_batch_size / num_workers``,
where ``mapped_element`` is produced by the ``mapper``.
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
return build_batch_data_loader(
dataset,
sampler,
total_batch_size,
aspect_ratio_grouping=aspect_ratio_grouping,
num_workers=num_workers,
)
def get_config_from_name(cfg, dataset_name):
# adjust config according to dataset
if 'refcoco' in dataset_name:
cfg.update(cfg['REF'])
return cfg
elif 'cocomini' in dataset_name:
cfg.update(cfg['DAVIS'])
return cfg
elif 'ytvos' in dataset_name:
cfg.update(cfg['VOS'])
return cfg
elif 'ade600' in dataset_name:
cfg.update(cfg['DAVIS'])
return cfg
elif 'openimage600' in dataset_name:
cfg.update(cfg['DAVIS'])
return cfg
elif 'ade' in dataset_name:
if 'ADE20K' in cfg.keys():
cfg.update(cfg['ADE20K'])
return cfg
elif 'imagenet' in dataset_name:
if 'IMAGENET' in cfg.keys():
cfg.update(cfg['IMAGENET'])
return cfg
elif 'vlp' in dataset_name:
cfg.update(cfg['VLP'])
return cfg
elif 'coco' in dataset_name:
if 'COCO' in cfg.keys():
cfg.update(cfg['COCO'])
return cfg
elif 'voc' in dataset_name:
cfg.update(cfg['VOC'])
return cfg
elif 'context' in dataset_name:
cfg.update(cfg['CONTEXT'])
return cfg
elif 'sun' in dataset_name:
cfg.update(cfg['SUN'])
return cfg
elif 'scan' in dataset_name:
cfg.update(cfg['SCAN'])
return cfg
elif 'cityscape' in dataset_name:
cfg.update(cfg['CITY'])
return cfg
elif 'bdd' in dataset_name:
cfg.update(cfg['BDD'])
return cfg
elif 'tsv' in dataset_name:
cfg.update(cfg['TSV'])
return cfg
elif 'phrasecut' in dataset_name:
cfg.update(cfg['PHRASE'])
return cfg
elif 'object365' in dataset_name:
cfg.update(cfg['OBJECT365'])
return cfg
elif 'openimage' in dataset_name:
cfg.update(cfg['OPENIMAGE'])
return cfg
elif 'lvis' in dataset_name:
cfg.update(cfg['LVIS'])
return cfg
elif 'seginw' in dataset_name:
cfg.update(cfg['SEGINW'])
return cfg
elif 'sbd' in dataset_name:
cfg.update(cfg['SBD'])
return cfg
elif 'davis' in dataset_name:
cfg.update(cfg['DAVIS'])
return cfg
elif 'med_sam' in dataset_name:
cfg.update(cfg['MedSAM'])
return cfg
elif 'biomed' in dataset_name:
cfg.update(cfg['BioMed'])
return cfg
elif 'sam' in dataset_name:
cfg.update(cfg['SAM'])
return cfg
else:
assert False, "dataset not support."
def build_eval_dataloader(cfg, ):
dataloaders = []
for dataset_name in cfg['DATASETS']['TEST']:
cfg = get_config_from_name(cfg, dataset_name)
# adjust mapper according to dataset
if dataset_name == 'imagenet_val':
mapper = ImageNetDatasetMapper(cfg, False)
elif dataset_name == 'bdd10k_val_sem_seg':
mapper = BDDSemDatasetMapper(cfg, False)
elif dataset_name in ["vlp_val", "vlp_captioning_val", "vlp_val2017", "vlp_captioning_val2017"]:
mapper = VLPreDatasetMapper(cfg, False, dataset_name)
elif dataset_name in ["scannet_21_val_seg", "scannet_38_val_seg", "scannet_41_val_seg"]:
mapper = ScanNetSegDatasetMapper(cfg, False)
elif dataset_name in ["scannet_21_panoptic_val", 'bdd10k_40_panoptic_val']:
mapper = ScanNetPanoDatasetMapper(cfg, False)
elif "pascalvoc_val" in dataset_name:
mapper = PascalVOCSegDatasetMapperIX(cfg, False, dataset_name)
elif 'sun' in dataset_name:
mapper = SunRGBDSegDatasetMapper(cfg, False)
elif 'refcoco' in dataset_name:
mapper = RefCOCODatasetMapper(cfg, False)
elif 'med_sam' in dataset_name:
mapper = MedSAMDatasetMapper(cfg, False)
elif 'biomed' in dataset_name:
mapper = BioMedDatasetMapper(cfg, False)
else:
mapper = None
dataloaders += [build_detection_test_loader(cfg, dataset_name, mapper=mapper)]
return dataloaders
def build_train_dataloader(cfg, ):
dataset_names = cfg['DATASETS']['TRAIN']
loaders = {}
for dataset_name in dataset_names:
cfg = get_config_from_name(cfg, dataset_name)
mapper_name = cfg['INPUT']['DATASET_MAPPER_NAME']
# Semantic segmentation dataset mapper
if mapper_name == "mask_former_semantic":
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# Panoptic segmentation dataset mapper
elif mapper_name == "mask_former_panoptic":
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# Instance segmentation dataset mapper
elif mapper_name == "mask_former_instance":
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# coco instance segmentation lsj new baseline
elif mapper_name == "coco_instance_lsj":
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
# coco panoptic segmentation lsj new baseline
elif mapper_name == "coco_panoptic_lsj":
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "vlpretrain":
mapper = VLPreDatasetMapper(cfg, True, dataset_name)
loaders['vlp'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "refcoco":
mapper = RefCOCODatasetMapper(cfg, True)
loaders['ref'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "coco_interactive":
mapper = COCOPanopticInteractiveDatasetMapper(cfg, True)
loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "medsam_interactive":
mapper = MedSAMDatasetMapper(cfg, True)
loaders['med_sam'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
elif mapper_name == "biomed_interactive":
mapper = BioMedDatasetMapper(cfg, True)
name_key = dataset_name.split("_")[1]
loaders[name_key] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
else:
mapper = None
loaders[dataset_name] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper)
if len(loaders) == 1 or not cfg['LOADER'].get('JOINT', False):
return list(loaders.values())[0]
else:
sample_prob = cfg['LOADER'].get('SAMPLE_PROB', 'prop')
mixing_level = cfg['LOADER'].get('MIXING_LEVEL', 1)
return JointLoader(loaders, key_dataset=cfg['LOADER'].get('KEY_DATASET', 'coco'), sample_prob=sample_prob, mixing_level=mixing_level)
def build_evaluator(cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each
builtin dataset. For your own dataset, you can simply create an
evaluator manually in your script and do not have to worry about the
hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg["SAVE_DIR"], "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
# semantic segmentation
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
# instance segmentation
if evaluator_type == "coco":
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
cfg_model_decoder_test = cfg["MODEL"]["DECODER"]["TEST"]
# panoptic segmentation
if evaluator_type in [
"coco_panoptic_seg",
"ade20k_panoptic_seg",
"cityscapes_panoptic_seg",
"mapillary_vistas_panoptic_seg",
"scannet_panoptic_seg",
"bdd_panoptic_pano"
]:
if cfg_model_decoder_test["PANOPTIC_ON"]:
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
# COCO
if (evaluator_type == "coco_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]) or evaluator_type == "object365_od":
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
if (evaluator_type == "coco_panoptic_seg" and cfg_model_decoder_test["SEMANTIC_ON"]) or evaluator_type == "coco_sem_seg":
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Mapillary Vistas
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg_model_decoder_test["SEMANTIC_ON"]:
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Cityscapes
if evaluator_type == "cityscapes_instance":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesSemSegEvaluator(dataset_name)
if evaluator_type == "cityscapes_panoptic_seg":
if cfg_model_decoder_test["SEMANTIC_ON"]:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
if cfg_model_decoder_test["INSTANCE_ON"]:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
# ADE20K
if evaluator_type == "ade20k_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
# SEGINW
if evaluator_type == "seginw" and cfg_model_decoder_test["INSTANCE_ON"]:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
# LVIS
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, output_dir=output_folder)
# Classification
if evaluator_type == "classification":
evaluator_list.append(ClassificationEvaluator(dataset_name, output_folder))
# Retrieval
if evaluator_type in ["retrieval"]:
evaluator_list.append(RetrievalEvaluator(dataset_name, output_folder, cfg['MODEL']['DECODER']['RETRIEVAL']['ENSEMBLE']))
if evaluator_type == "captioning":
evaluator_list.append(CaptioningEvaluator(dataset_name, output_folder, MetadataCatalog.get(dataset_name).gt_json))
if evaluator_type in ["grounding_refcoco", "grounding_phrasecut", "grounding_spatial", "grounding_entity"]:
evaluator_list.append(GroundingEvaluator(dataset_name))
# Interactive
if evaluator_type in ["interactive", "interactive_grounding"]:
evaluator_list.append(InteractiveEvaluator(dataset_name, output_dir=output_folder, max_clicks=cfg['STROKE_SAMPLER']['EVAL']['MAX_ITER'], iou_iter=cfg['STROKE_SAMPLER']['EVAL']['IOU_ITER']))
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
|