File size: 7,413 Bytes
edebe10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from typing import Optional

import torch
from torch import nn, Tensor
from torch.nn import functional as F

from timm.models.layers import trunc_normal_
from detectron2.layers import Conv2d
import fvcore.nn.weight_init as weight_init

from ..utils import MultiheadAttention


class SelfAttentionLayer(nn.Module):

    def __init__(self, d_model, nhead, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt,
                     tgt_mask: Optional[Tensor] = None,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        return tgt

    def forward_pre(self, tgt,
                    tgt_mask: Optional[Tensor] = None,
                    tgt_key_padding_mask: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        
        return tgt

    def forward(self, tgt,
                tgt_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, tgt_mask,
                                    tgt_key_padding_mask, query_pos)
        return self.forward_post(tgt, tgt_mask,
                                 tgt_key_padding_mask, query_pos)


class CrossAttentionLayer(nn.Module):

    def __init__(self, d_model, nhead, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt, memory,
                     memory_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        return tgt, avg_attn

    def forward_pre(self, tgt, memory,
                    memory_mask: Optional[Tensor] = None,
                    memory_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm(tgt)
        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)
        tgt = tgt + self.dropout(tgt2)

        return tgt, avg_attn

    def forward(self, tgt, memory,
                memory_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, memory, memory_mask,
                                    memory_key_padding_mask, pos, query_pos)
        return self.forward_post(tgt, memory, memory_mask,
                                 memory_key_padding_mask, pos, query_pos)


class FFNLayer(nn.Module):

    def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm = nn.LayerNorm(d_model)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt):
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        return tgt

    def forward_pre(self, tgt):
        tgt2 = self.norm(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout(tgt2)
        return tgt

    def forward(self, tgt):
        if self.normalize_before:
            return self.forward_pre(tgt)
        return self.forward_post(tgt)


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")


class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x