File size: 19,428 Bytes
edebe10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# --------------------------------------------------------
# SEEM -- Segment Everything Everywhere All At Once
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
# --------------------------------------------------------

import logging
from typing import Optional

import torch
from torch import nn, Tensor
from torch.nn import functional as F

from timm.models.layers import trunc_normal_
from detectron2.layers import Conv2d
import fvcore.nn.weight_init as weight_init

from .build import register_decoder
from .modules import SelfAttentionLayer, CrossAttentionLayer, FFNLayer, MLP
from .prototype.attention_data_struct_seemdemo import AttentionDataStruct
from ..utils import rand_sample_plain as rand_sample
from ..utils import prepare_features, configurable
from ..modules import PositionEmbeddingSine
from ..modules.point_features import point_sample


class SEEMDecoder(nn.Module):

    @configurable
    def __init__(
        self,
        lang_encoder: nn.Module,
        in_channels,
        mask_classification=True,
        *,
        hidden_dim: int,
        dim_proj: int,
        num_queries: int,
        contxt_len: int,
        nheads: int,
        dim_feedforward: int,
        dec_layers: int,
        pre_norm: bool,
        mask_dim: int,
        task_switch: dict,
        enforce_input_project: bool,
        max_spatial_len: int,
        attn_arch: dict,
    ):
        """
        NOTE: this interface is experimental.
        Args:
            in_channels: channels of the input features
            mask_classification: whether to add mask classifier or not
            num_classes: number of classes
            hidden_dim: Transformer feature dimension
            num_queries: number of queries
            nheads: number of heads
            dim_feedforward: feature dimension in feedforward network
            enc_layers: number of Transformer encoder layers
            dec_layers: number of Transformer decoder layers
            pre_norm: whether to use pre-LayerNorm or not
            mask_dim: mask feature dimension
            enforce_input_project: add input project 1x1 conv even if input
                channels and hidden dim is identical
        """
        super().__init__()
        assert mask_classification, "Only support mask classification model"
        self.mask_classification = mask_classification

        # positional encoding
        N_steps = hidden_dim // 2
        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
        
        # define Transformer decoder here
        self.num_heads = nheads
        self.num_layers = dec_layers
        self.contxt_len = contxt_len
        self.transformer_self_attention_layers = nn.ModuleList()
        self.transformer_cross_attention_layers = nn.ModuleList()
        self.transformer_ffn_layers = nn.ModuleList()

        for _ in range(self.num_layers):
            self.transformer_self_attention_layers.append(
                SelfAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

            self.transformer_cross_attention_layers.append(
                CrossAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

            self.transformer_ffn_layers.append(
                FFNLayer(
                    d_model=hidden_dim,
                    dim_feedforward=dim_feedforward,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

        self.decoder_norm = nn.LayerNorm(hidden_dim)

        self.num_queries = num_queries
        # learnable query features
        self.query_feat = nn.Embedding(num_queries, hidden_dim)
        # learnable query p.e.
        self.query_embed = nn.Embedding(num_queries, hidden_dim)
        # learnable positive negative indicator
        self.pn_indicator = nn.Embedding(2, hidden_dim)
        
        # level embedding (we always use 3 scales)
        self.num_feature_levels = 3
        self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
        self.input_proj = nn.ModuleList()
        
        for _ in range(self.num_feature_levels):
            if in_channels != hidden_dim or enforce_input_project:
                self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
                weight_init.c2_xavier_fill(self.input_proj[-1])
            else:
                self.input_proj.append(nn.Sequential())

        self.task_switch = task_switch
        self.query_index = {}

        # output FFNs
        self.lang_encoder = lang_encoder
        if self.task_switch['mask']:
            self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)

        self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
        trunc_normal_(self.class_embed, std=.02)

        if task_switch['bbox']:
            self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)

        if task_switch['spatial']:
            # spatial query
            self.mask_sptial_embed = nn.ParameterList([nn.Parameter(torch.empty(hidden_dim, hidden_dim)) for x in range(3)])
            trunc_normal_(self.mask_sptial_embed[0], std=.02)
            trunc_normal_(self.mask_sptial_embed[1], std=.02)
            trunc_normal_(self.mask_sptial_embed[2], std=.02)

            self.max_spatial_len = max_spatial_len
            # spatial memory
            num_spatial_memories = attn_arch['SPATIAL_MEMORIES']
            self.spatial_embed = nn.Embedding(num_spatial_memories, hidden_dim)
            self.spatial_featured = nn.Embedding(num_spatial_memories, hidden_dim)

        # build AttentionDataStruct
        attn_arch['NUM_LAYERS'] = self.num_layers
        self.attention_data = AttentionDataStruct(attn_arch, task_switch)

    @classmethod
    def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
        ret = {}

        ret["lang_encoder"] = lang_encoder
        ret["in_channels"] = in_channels
        ret["mask_classification"] = mask_classification

        enc_cfg = cfg['MODEL']['ENCODER']
        dec_cfg = cfg['MODEL']['DECODER']

        ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
        ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
        ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
        ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']

        # Transformer parameters:
        ret["nheads"] = dec_cfg['NHEADS']
        ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']

        # NOTE: because we add learnable query features which requires supervision,
        # we add minus 1 to decoder layers to be consistent with our loss
        # implementation: that is, number of auxiliary losses is always
        # equal to number of decoder layers. With learnable query features, the number of
        # auxiliary losses equals number of decoders plus 1.
        assert dec_cfg['DEC_LAYERS'] >= 1
        ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
        ret["pre_norm"] = dec_cfg['PRE_NORM']
        ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
        ret["mask_dim"] = enc_cfg['MASK_DIM']
        ret["task_switch"] = extra['task_switch']
        ret["max_spatial_len"] = dec_cfg['MAX_SPATIAL_LEN']

        # attn data struct
        ret["attn_arch"] = cfg['ATTENTION_ARCH']

        return ret

    def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
        # x is a list of multi-scale feature
        assert len(x) == self.num_feature_levels; del mask
        spatial_extra_flag = 'spatial_query_pos_mask' in extra.keys() or task == 'refimg'
        grounding_extra_flag = 'grounding_tokens' in extra.keys()
        visual_extra_flag = 'visual_query_pos' in extra.keys()
        audio_extra_flag = 'audio_tokens' in extra.keys()
        spatial_memory_flag = 'prev_mask' in extra.keys()
        flags = {"spatial": spatial_extra_flag, "grounding": grounding_extra_flag, "memories_spatial": spatial_memory_flag, "visual": visual_extra_flag, "audio": audio_extra_flag}
        self.attention_data.reset(flags, task, extra)

        src, pos, size_list = prepare_features(x, self.num_feature_levels, self.pe_layer, self.input_proj, self.level_embed)
        _, bs, _ = src[0].shape

        # QxNxC
        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
        self.attention_data.set('queries_object', 'queries', output, query_embed)

        if self.task_switch['spatial'] and spatial_extra_flag:
            # get divisor
            _,h,w = extra['spatial_query_pos_mask'][0].shape
            divisor = torch.tensor([h,w], device=output.device)[None,]

            # Get mean pos spatial query
            non_zero_pos_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_pos_mask']]
            non_zero_pos_point = nn.utils.rnn.pad_sequence(non_zero_pos_point, padding_value=-1).permute(1,0,2)
            non_zero_pos_mask = (non_zero_pos_point.sum(dim=-1) < 0)
            spatial_query_pos = point_sample(mask_features, non_zero_pos_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True)
            spatial_query_pos = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_pos.transpose(1,2), ~non_zero_pos_mask)]).transpose(0,1).nan_to_num()

            # Get mean neg spatial query
            non_zero_neg_point = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[-1]).t() for m in extra['spatial_query_neg_mask']]
            non_zero_neg_point = nn.utils.rnn.pad_sequence(non_zero_neg_point, padding_value=-1).permute(1,0,2)
            non_zero_neg_mask = (non_zero_neg_point.sum(dim=-1) < 0)
            spatial_query_neg = point_sample(mask_features, non_zero_neg_point.flip(dims=(2,)).type(mask_features.dtype), align_corners=True)
            spatial_query_neg = torch.stack([x[m].mean(dim=0, keepdim=True) for x, m in zip(spatial_query_neg.transpose(1,2), ~non_zero_neg_mask)]).transpose(0,1).nan_to_num()

            # merge positive and negative sample points for self attention

            # Get layerwise spatial query
            src_spatial_queries = []
            src_spatial_maskings = []
            for i in range(len(src)):
                hw,_,dc = src[i].shape
                src_mask_features = src[i].view(size_list[i][0],size_list[i][1],bs,dc)
                src_mask_features = src_mask_features @ self.mask_sptial_embed[i]

                non_zero_query_point_pos = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_pos_mask']]
                non_zero_query_point_neg = [rand_sample((m.nonzero()[:,1:]/divisor).t(), self.max_spatial_len[i]).t() for m in extra['spatial_query_neg_mask']]
                non_zero_query_point = [torch.cat([x,y], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]

                pos_neg_indicator = [torch.cat([torch.ones(x.shape[0], device=x.device), -torch.ones(y.shape[0], device=y.device)]) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)]
                pos_neg_indicator = nn.utils.rnn.pad_sequence(pos_neg_indicator, padding_value=0)

                non_zero_query_point = nn.utils.rnn.pad_sequence(non_zero_query_point, padding_value=-1).permute(1,0,2)
                non_zero_query_mask = (non_zero_query_point.sum(dim=-1) < 0)
                non_zero_query_point[non_zero_query_mask] = 0

                spatial_tokens = point_sample(src_mask_features.permute(2,3,0,1), non_zero_query_point.flip(dims=(2,)).type(src_mask_features.dtype), align_corners=True).permute(2,0,1)
                spatial_tokens[pos_neg_indicator==1] += self.pn_indicator.weight[0:1]
                spatial_tokens[pos_neg_indicator==-1] += self.pn_indicator.weight[1:2]

                src_spatial_queries += [spatial_tokens]
                src_spatial_maskings += [non_zero_query_mask]

            if 'refimg' in task:
                output_refimg = {}
                output_refimg['visual_query_pos'] = spatial_query_pos
                output_refimg['visual_query_neg'] = spatial_query_neg
                output_refimg['src_visual_queries'] = src_spatial_queries
                output_refimg['src_visual_maskings'] = src_spatial_maskings
                return output_refimg

            if task != 'demo':
                # Get object query for spatial index
                self.attention_data.set('queries_spatial', 'queries')

        if self.task_switch['visual'] and visual_extra_flag:
            visual_query_pos = extra['visual_query_pos']
            visual_query_neg = extra['visual_query_neg']
            src_visual_queries = extra['src_visual_queries']
            src_visual_maskings = extra['src_visual_maskings']

        if self.task_switch['grounding'] and grounding_extra_flag:
            # Get grounding tokens
            grounding_tokens = extra['grounding_tokens']
            _grounding_tokens = grounding_tokens.detach().clone()

            self.attention_data.set('tokens_grounding', 'tokens', grounding_tokens, _grounding_tokens)
            self.attention_data.set_maskings('tokens_grounding', extra['grounding_nonzero_mask'])

        if self.task_switch['audio'] and audio_extra_flag:
            # Get grounding tokens
            grounding_tokens = extra['audio_tokens']
            _grounding_tokens = grounding_tokens.detach().clone()

            self.attention_data.set('tokens_audio', 'tokens', grounding_tokens, _grounding_tokens)
            self.attention_data.set_maskings('tokens_audio', extra['audio_nonzero_mask'])

        output, query_embed = self.attention_data.cross_attn_variables()
        # prediction heads on learnable query features
        results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0])
        results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None
        results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None
        results["predictions_pos_visual"] = visual_query_pos.transpose(0,1) if visual_extra_flag else None
        results["predictions_neg_visual"] = visual_query_neg.transpose(0,1) if visual_extra_flag else None
        self.attention_data.set_results(results)

        for i in range(self.num_layers):
            level_index = i % self.num_feature_levels
            # CROSS ATTENTION
            output, avg_attn = self.transformer_cross_attention_layers[i](
                output, src[level_index],
                memory_mask=self.attention_data.cross_attn_mask(size_list[level_index], self.num_heads),
                memory_key_padding_mask=None,  # here we do not apply masking on padded region
                pos=pos[level_index], query_pos=query_embed
            )
            self.attention_data.update_variables(output, 'cross_attn')

            # SELF ATTENTION
            self_attn_mask = torch.zeros((bs, self.num_queries, self.num_queries), device=query_embed.device).bool() # Default False (attend oq)
            if self.task_switch['spatial'] and spatial_extra_flag:
                # get spatial tokens
                spatial_tokens = src_spatial_queries[level_index]
                _spatial_tokens = spatial_tokens.detach().clone()

                self.attention_data.set('tokens_spatial', 'tokens', spatial_tokens, _spatial_tokens)
                self.attention_data.set_maskings('tokens_spatial', src_spatial_maskings[level_index])

            if self.task_switch['visual'] and visual_extra_flag:
                # get spatial tokens
                visual_tokens = src_visual_queries[level_index]
                _visual_tokens = visual_tokens.detach().clone()

                self.attention_data.set('tokens_visual', 'tokens', visual_tokens, _visual_tokens)
                self.attention_data.set_maskings('tokens_visual', src_visual_maskings[level_index])

            output, query_embed, self_attn_mask = self.attention_data.self_attn(bs, self.num_heads)
            output = self.transformer_self_attention_layers[i](
                output, tgt_mask=self_attn_mask,
                tgt_key_padding_mask=None,
                query_pos=query_embed)

            # FFN
            output = self.transformer_ffn_layers[i](
                output
            )

            self.attention_data.update_variables(output, 'self_attn')
            output, query_embed = self.attention_data.cross_attn_variables()
            results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i)
            results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None
            results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None
            results["predictions_pos_visual"] = visual_query_pos.transpose(0,1) if visual_extra_flag else None
            results["predictions_neg_visual"] = visual_query_neg.transpose(0,1) if visual_extra_flag else None
            self.attention_data.set_results(results)

        return self.attention_data.organize_output()

    def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1):
        decoder_output = self.decoder_norm(output)
        decoder_output = decoder_output.transpose(0, 1)
        class_embed = decoder_output @ self.class_embed
        outputs_class = self.lang_encoder.compute_similarity(class_embed)
        mask_embed = self.mask_embed(decoder_output)
        outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
        
        outputs_bbox = [None for i in range(len(outputs_mask))]
        if self.task_switch['bbox']:
            outputs_bbox = self.bbox_embed(decoder_output)

        # NOTE: prediction is of higher-resolution
        # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
        attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)

        # must use bool type
        # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
        attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
        attn_mask = attn_mask.detach()

        outputs_caption = class_embed

        results = {
            "attn_mask": attn_mask,
            "predictions_class": outputs_class,
            "predictions_mask": outputs_mask,
            "predictions_bbox": outputs_bbox,
            "predictions_caption": outputs_caption,
            "predictions_maskemb": mask_embed,
        }
        return results

@register_decoder
def get_seem_interface(cfg, in_channels, lang_encoder, mask_classification, extra):
    return SEEMDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)