Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,880 Bytes
edebe10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------
import logging
from typing import Optional
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from timm.models.layers import trunc_normal_
from detectron2.layers import Conv2d
import fvcore.nn.weight_init as weight_init
from .build import register_decoder
from .modules import SelfAttentionLayer, CrossAttentionLayer, FFNLayer, MLP
from ..utils import configurable
from ..modules import PositionEmbeddingSine
class XDecoder(nn.Module):
@configurable
def __init__(
self,
lang_encoder: nn.Module,
in_channels,
mask_classification=True,
*,
hidden_dim: int,
dim_proj: int,
num_queries: int,
contxt_len: int,
nheads: int,
dim_feedforward: int,
dec_layers: int,
pre_norm: bool,
mask_dim: int,
task_switch: dict,
captioning_step: int,
enforce_input_project: bool,
):
"""
NOTE: this interface is experimental.
Args:
in_channels: channels of the input features
mask_classification: whether to add mask classifier or not
num_classes: number of classes
hidden_dim: Transformer feature dimension
num_queries: number of queries
nheads: number of heads
dim_feedforward: feature dimension in feedforward network
enc_layers: number of Transformer encoder layers
dec_layers: number of Transformer decoder layers
pre_norm: whether to use pre-LayerNorm or not
mask_dim: mask feature dimension
enforce_input_project: add input project 1x1 conv even if input
channels and hidden dim is identical
"""
super().__init__()
assert mask_classification, "Only support mask classification model"
self.mask_classification = mask_classification
# positional encoding
N_steps = hidden_dim // 2
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
# define Transformer decoder here
self.num_heads = nheads
self.num_layers = dec_layers
self.contxt_len = contxt_len
self.transformer_self_attention_layers = nn.ModuleList()
self.transformer_cross_attention_layers = nn.ModuleList()
self.transformer_ffn_layers = nn.ModuleList()
for _ in range(self.num_layers):
self.transformer_self_attention_layers.append(
SelfAttentionLayer(
d_model=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_cross_attention_layers.append(
CrossAttentionLayer(
d_model=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.transformer_ffn_layers.append(
FFNLayer(
d_model=hidden_dim,
dim_feedforward=dim_feedforward,
dropout=0.0,
normalize_before=pre_norm,
)
)
self.decoder_norm = nn.LayerNorm(hidden_dim)
self.num_queries = num_queries
# learnable query features
self.query_feat = nn.Embedding(num_queries, hidden_dim)
# learnable query p.e.
self.query_embed = nn.Embedding(num_queries, hidden_dim)
# level embedding (we always use 3 scales)
self.num_feature_levels = 3
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
self.input_proj = nn.ModuleList()
for _ in range(self.num_feature_levels):
if in_channels != hidden_dim or enforce_input_project:
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
weight_init.c2_xavier_fill(self.input_proj[-1])
else:
self.input_proj.append(nn.Sequential())
self.task_switch = task_switch
# output FFNs
self.lang_encoder = lang_encoder
if self.task_switch['mask']:
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
trunc_normal_(self.class_embed, std=.02)
if task_switch['bbox']:
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
# Caption Project and query
if task_switch['captioning']:
self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
trunc_normal_(self.caping_embed, std=.02)
self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
self.captioning_step = captioning_step
# register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
self.register_buffer("self_attn_mask", self_attn_mask)
@classmethod
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
ret = {}
ret["lang_encoder"] = lang_encoder
ret["in_channels"] = in_channels
ret["mask_classification"] = mask_classification
enc_cfg = cfg['MODEL']['ENCODER']
dec_cfg = cfg['MODEL']['DECODER']
ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
# Transformer parameters:
ret["nheads"] = dec_cfg['NHEADS']
ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
# NOTE: because we add learnable query features which requires supervision,
# we add minus 1 to decoder layers to be consistent with our loss
# implementation: that is, number of auxiliary losses is always
# equal to number of decoder layers. With learnable query features, the number of
# auxiliary losses equals number of decoders plus 1.
assert dec_cfg['DEC_LAYERS'] >= 1
ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
ret["pre_norm"] = dec_cfg['PRE_NORM']
ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
ret["mask_dim"] = enc_cfg['MASK_DIM']
ret["task_switch"] = extra['task_switch']
ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
return ret
def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
if task == 'captioning_infer':
return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
# x is a list of multi-scale feature
assert len(x) == self.num_feature_levels
src = []
pos = []
size_list = []
# disable mask, it does not affect performance
del mask
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
pos.append(self.pe_layer(x[i], None).flatten(2))
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
# flatten NxCxHxW to HWxNxC
pos[-1] = pos[-1].permute(2, 0, 1)
src[-1] = src[-1].permute(2, 0, 1)
_, bs, _ = src[0].shape
# QxNxC
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
predictions_class = []
predictions_mask = []
predictions_bbox = []
predictions_caption = []
predictions_captioning = []
self_tgt_mask = None
if self.training and task == 'vlp' and self.task_switch['captioning']:
# output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
_caping_lang_embed = caping_lang_embed.detach().clone()
output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']):
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
grounding_tokens = extra['grounding_tokens']
_grounding_tokens = grounding_tokens.detach().clone()
# initialize with negative attention at the beginning.
pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
self_tgt_mask = pad_tgt_mask
output = torch.cat((output, output[:-1]), dim=0)
query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
else:
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
# prediction heads on learnable query features
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
attn_mask = results["attn_mask"]
predictions_class.append(results["outputs_class"])
predictions_mask.append(results["outputs_mask"])
predictions_bbox.append(results["outputs_bbox"])
predictions_caption.append(results["outputs_caption"])
predictions_captioning.append(results["outputs_captionting"])
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
if self.training and task == 'vlp' and self.task_switch['captioning']:
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
# attention: cross-attention first
output, avg_attn = self.transformer_cross_attention_layers[i](
output, src[level_index],
memory_mask=attn_mask,
memory_key_padding_mask=None, # here we do not apply masking on padded region
pos=pos[level_index], query_pos=query_embed
)
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']):
output = torch.cat((output, _grounding_tokens), dim=0)
query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
output = self.transformer_self_attention_layers[i](
output, tgt_mask=self_tgt_mask,
tgt_key_padding_mask=None,
query_pos=query_embed
)
# FFN
output = self.transformer_ffn_layers[i](
output
)
if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']:
_grounding_tokens = output[-len(_grounding_tokens):]
output = output[:-len(_grounding_tokens)]
query_embed = query_embed[:-len(_grounding_tokens)]
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
attn_mask = results["attn_mask"]
predictions_class.append(results["outputs_class"])
predictions_mask.append(results["outputs_mask"])
predictions_bbox.append(results["outputs_bbox"])
predictions_caption.append(results["outputs_caption"])
predictions_captioning.append(results["outputs_captionting"])
assert len(predictions_class) == self.num_layers + 1
if task == 'vlp':
out = {'pred_captionings': predictions_captioning[-1],
'pred_captions': predictions_caption[-1],
'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
return out
else:
out = {
'pred_logits': predictions_class[-1],
'pred_masks': predictions_mask[-1],
'pred_boxes': predictions_bbox[-1],
'pred_captions': predictions_caption[-1],
'aux_outputs': self._set_aux_loss(
predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
)
}
return out
def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
# x is a list of multi-scale feature
assert len(x) == self.num_feature_levels
src = []
pos = []
size_list = []
# disable mask, it does not affect performance
del mask
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
pos.append(self.pe_layer(x[i], None).flatten(2))
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
# flatten NxCxHxW to HWxNxC
pos[-1] = pos[-1].permute(2, 0, 1)
src[-1] = src[-1].permute(2, 0, 1)
_, bs, _ = src[0].shape
# QxNxC
query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
caping_lang_token = extra['start_token'].repeat(bs, 1)
pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
# prepare token embedding for evaluation
token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
# token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
for cap_idx in range(0, self.captioning_step):
caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
caping_lang_embed += pos_embed_caping
query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
# output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
# prediction heads on learnable query features
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
attn_mask = results["attn_mask"]
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
if extra['captioning_mask'] is not None:
bs,nq,wh = attn_mask.shape
assert bs==self.num_heads, "Only support single image referring captioning."
cap_mask = extra['captioning_mask']
attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
attn_mask[:,self.num_queries:, cap_mask] = True
attn_mask = attn_mask.reshape(bs,nq,wh)
# attention: cross-attention first
output, avg_attn = self.transformer_cross_attention_layers[i](
output, src[level_index],
memory_mask=attn_mask,
memory_key_padding_mask=None, # here we do not apply masking on padded region
pos=pos[level_index], query_pos=query_embed
)
output = self.transformer_self_attention_layers[i](
output, tgt_mask=self_tgt_mask,
tgt_key_padding_mask=None,
query_pos=query_embed
)
# FFN
output = self.transformer_ffn_layers[i](
output
)
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
attn_mask = results["attn_mask"]
pred_captions_gen = results['outputs_captionting']
# pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
pred_captions_gen = pred_captions_gen @ token_embs.t()
caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
texts_new = []
for x in texts:
x = x.split('<|endoftext|>')[0]
x = x.replace('<|endoftext|>','')
x = x.replace('<|startoftext|>','')
x = x.strip()
texts_new.append(x)
out = {'pred_captionings': caping_lang_token,
'pred_texts': texts_new}
return out
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
decoder_output = self.decoder_norm(output)
decoder_output = decoder_output.transpose(0, 1)
# extract image captioning token from decoder output.
if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
else:
outputs_captionting = None
# recompute class token output.
norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
obj_token = norm_decoder_output[:,:self.num_queries-1]
cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']):
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
else:
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
# compute class, mask and bbox.
class_embed = decoder_output @ self.class_embed
# HACK do not compute similarity if mask is not on
outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training)))
if self.task_switch['mask']:
mask_embed = self.mask_embed(decoder_output)
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
# NOTE: prediction is of higher-resolution
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bicubic", align_corners=False, antialias=True)
# must use bool type
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
attn_mask = attn_mask.detach()
# NOTE: fill False for cls token (JY)
attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
else:
outputs_mask = None
attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
outputs_bbox = [None for i in range(len(decoder_output))]
if self.task_switch['bbox']:
outputs_bbox = self.bbox_embed(decoder_output)
outputs_caption = None
if self.task_switch['caption']:
outputs_caption = class_embed
results = {
"outputs_class": outputs_class,
"outputs_mask": outputs_mask,
"outputs_bbox": outputs_bbox,
"attn_mask": attn_mask,
"outputs_caption": outputs_caption,
"outputs_captionting": outputs_captionting,
}
return results
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
if self.mask_classification:
return [
{"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
]
else:
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
@register_decoder
def get_xdecoder_interface(cfg, in_channels, lang_encoder, mask_classification, extra):
return XDecoder(cfg, in_channels, lang_encoder, mask_classification, extra) |