Leyogho's picture
Core
edebe10
raw
history blame
8.11 kB
import numpy as np
import random
from PIL import Image, ImageDraw
def get_mask_by_input_strokes(
init_points, imageWidth=320, imageHeight=180, nStroke=5,
nVertexBound=[10, 30], maxHeadSpeed=15, maxHeadAcceleration=(15, 0.5),
brushWidthBound=(5, 20), boarderGap=None, nMovePointRatio=0.5, maxPiontMove=10,
maxLineAcceleration=5, maxInitSpeed=5
):
'''
Get video masks by random strokes which move randomly between each
frame, including the whole stroke and its control points
Parameters
----------
imageWidth: Image width
imageHeight: Image height
nStroke: Number of drawed lines
nVertexBound: Lower/upper bound of number of control points for each line
maxHeadSpeed: Max head speed when creating control points
maxHeadAcceleration: Max acceleration applying on the current head point (
a head point and its velosity decides the next point)
brushWidthBound (min, max): Bound of width for each stroke
boarderGap: The minimum gap between image boarder and drawed lines
nMovePointRatio: The ratio of control points to move for next frames
maxPiontMove: The magnitude of movement for control points for next frames
maxLineAcceleration: The magnitude of acceleration for the whole line
Examples
----------
object_like_setting = {
"nVertexBound": [5, 20],
"maxHeadSpeed": 15,
"maxHeadAcceleration": (15, 3.14),
"brushWidthBound": (30, 50),
"nMovePointRatio": 0.5,
"maxPiontMove": 10,
"maxLineAcceleration": (5, 0.5),
"boarderGap": 20,
"maxInitSpeed": 10,
}
rand_curve_setting = {
"nVertexBound": [10, 30],
"maxHeadSpeed": 20,
"maxHeadAcceleration": (15, 0.5),
"brushWidthBound": (3, 10),
"nMovePointRatio": 0.5,
"maxPiontMove": 3,
"maxLineAcceleration": (5, 0.5),
"boarderGap": 20,
"maxInitSpeed": 6
}
get_video_masks_by_moving_random_stroke(video_len=5, nStroke=3, **object_like_setting)
'''
# Initilize a set of control points to draw the first mask
mask = Image.new(mode='1', size=(imageWidth, imageHeight), color=1)
control_points_set = []
for i in range(nStroke):
brushWidth = np.random.randint(brushWidthBound[0], brushWidthBound[1])
Xs, Ys, velocity = get_random_stroke_control_points(
init_point=init_points[i],
imageWidth=imageWidth, imageHeight=imageHeight,
nVertexBound=nVertexBound, maxHeadSpeed=maxHeadSpeed,
maxHeadAcceleration=maxHeadAcceleration, boarderGap=boarderGap,
maxInitSpeed=maxInitSpeed
)
control_points_set.append((Xs, Ys, velocity, brushWidth))
draw_mask_by_control_points(mask, Xs, Ys, brushWidth, fill=0)
# Generate the following masks by randomly move strokes and their control points
mask = Image.new(mode='1', size=(imageWidth, imageHeight), color=1)
for j in range(len(control_points_set)):
Xs, Ys, velocity, brushWidth = control_points_set[j]
new_Xs, new_Ys = random_move_control_points(
Xs, Ys, velocity, nMovePointRatio, maxPiontMove,
maxLineAcceleration, boarderGap
)
control_points_set[j] = (new_Xs, new_Ys, velocity, brushWidth)
for Xs, Ys, velocity, brushWidth in control_points_set:
draw_mask_by_control_points(mask, Xs, Ys, brushWidth, fill=0)
return np.array(mask)
def random_accelerate(velocity, maxAcceleration, dist='uniform'):
speed, angle = velocity
d_speed, d_angle = maxAcceleration
if dist == 'uniform':
speed += np.random.uniform(-d_speed, d_speed)
angle += np.random.uniform(-d_angle, d_angle)
elif dist == 'guassian':
speed += np.random.normal(0, d_speed / 2)
angle += np.random.normal(0, d_angle / 2)
else:
raise NotImplementedError(f'Distribution type {dist} is not supported.')
return (speed, angle)
def random_move_control_points(Xs, Ys, lineVelocity, nMovePointRatio, maxPiontMove, maxLineAcceleration, boarderGap=15):
new_Xs = Xs.copy()
new_Ys = Ys.copy()
# move the whole line and accelerate
speed, angle = lineVelocity
new_Xs += int(speed * np.cos(angle))
new_Ys += int(speed * np.sin(angle))
lineVelocity = random_accelerate(lineVelocity, maxLineAcceleration, dist='guassian')
# choose points to move
chosen = np.arange(len(Xs))
np.random.shuffle(chosen)
chosen = chosen[:int(len(Xs) * nMovePointRatio)]
for i in chosen:
new_Xs[i] += np.random.randint(-maxPiontMove, maxPiontMove)
new_Ys[i] += np.random.randint(-maxPiontMove, maxPiontMove)
return new_Xs, new_Ys
def get_random_stroke_control_points(
init_point,
imageWidth, imageHeight,
nVertexBound=(10, 30), maxHeadSpeed=10, maxHeadAcceleration=(5, 0.5), boarderGap=20,
maxInitSpeed=10
):
'''
Implementation the free-form training masks generating algorithm
proposed by JIAHUI YU et al. in "Free-Form Image Inpainting with Gated Convolution"
'''
startX = init_point[0]
startY = init_point[1]
Xs = [init_point[0]]
Ys = [init_point[1]]
numVertex = np.random.randint(nVertexBound[0], nVertexBound[1])
angle = np.random.uniform(0, 2 * np.pi)
speed = np.random.uniform(0, maxHeadSpeed)
for i in range(numVertex):
speed, angle = random_accelerate((speed, angle), maxHeadAcceleration)
speed = np.clip(speed, 0, maxHeadSpeed)
nextX = startX + speed * np.sin(angle)
nextY = startY + speed * np.cos(angle)
if boarderGap is not None:
nextX = np.clip(nextX, boarderGap, imageWidth - boarderGap)
nextY = np.clip(nextY, boarderGap, imageHeight - boarderGap)
startX, startY = nextX, nextY
Xs.append(nextX)
Ys.append(nextY)
velocity = get_random_velocity(maxInitSpeed, dist='guassian')
return np.array(Xs), np.array(Ys), velocity
def get_random_velocity(max_speed, dist='uniform'):
if dist == 'uniform':
speed = np.random.uniform(max_speed)
elif dist == 'guassian':
speed = np.abs(np.random.normal(0, max_speed / 2))
else:
raise NotImplementedError(f'Distribution type {dist} is not supported.')
angle = np.random.uniform(0, 2 * np.pi)
return (speed, angle)
def draw_mask_by_control_points(mask, Xs, Ys, brushWidth, fill=255):
radius = brushWidth // 2 - 1
for i in range(1, len(Xs)):
draw = ImageDraw.Draw(mask)
startX, startY = Xs[i - 1], Ys[i - 1]
nextX, nextY = Xs[i], Ys[i]
draw.line((startX, startY) + (nextX, nextY), fill=fill, width=brushWidth)
for x, y in zip(Xs, Ys):
draw.ellipse((x - radius, y - radius, x + radius, y + radius), fill=fill)
return mask
# modified from https://github.com/naoto0804/pytorch-inpainting-with-partial-conv/blob/master/generate_data.py
def get_random_walk_mask(imageWidth=320, imageHeight=180, length=None):
action_list = [[0, 1], [0, -1], [1, 0], [-1, 0]]
canvas = np.zeros((imageHeight, imageWidth)).astype("i")
if length is None:
length = imageWidth * imageHeight
x = random.randint(0, imageHeight - 1)
y = random.randint(0, imageWidth - 1)
x_list = []
y_list = []
for i in range(length):
r = random.randint(0, len(action_list) - 1)
x = np.clip(x + action_list[r][0], a_min=0, a_max=imageHeight - 1)
y = np.clip(y + action_list[r][1], a_min=0, a_max=imageWidth - 1)
x_list.append(x)
y_list.append(y)
canvas[np.array(x_list), np.array(y_list)] = 1
return Image.fromarray(canvas * 255).convert('1')
def get_masked_ratio(mask):
"""
Calculate the masked ratio.
mask: Expected a binary PIL image, where 0 and 1 represent
masked(invalid) and valid pixel values.
"""
hist = mask.histogram()
return hist[0] / np.prod(mask.size)