Spaces:
Running
on
Zero
Running
on
Zero
import json | |
from scipy import stats | |
import numpy as np | |
import huggingface_hub | |
def check_mask_stats(img, mask, modality_type, target): | |
# img: np.array, shape=(H, W, 3) RGB image with pixel values in [0, 255] | |
# mask: np.array, shape=(H, W, 1) mask probability scaled to [0,255] with pixel values in [0, 255] | |
# modality_type: str, see target_dist.json for the list of modality types | |
# target: str, see target_dist.json for the list of targets | |
huggingface_hub.hf_hub_download('microsoft/BiomedParse', filename='target_dist.json', local_dir='./inference_utils') | |
huggingface_hub.hf_hub_download('microsoft/BiomedParse', filename="config.yaml", local_dir="./configs") | |
target_dist = json.load(open("inference_utils/target_dist.json")) | |
if modality_type not in target_dist: | |
raise ValueError(f"Currently support modality types: {list(target_dist.keys())}") | |
if target not in target_dist[modality_type]: | |
raise ValueError(f"Currently support targets for {modality_type}: {list(target_dist[modality_type].keys())}") | |
ms = mask_stats(mask, img) | |
ps = [stats.ks_1samp([ms[i]], stats.beta(param[0], param[1]).cdf).pvalue for i, param in enumerate(target_dist[modality_type][target])] | |
p_value = np.prod(ps) | |
adj_p_value = p_value**0.24 # adjustment for four test products | |
return adj_p_value | |
def mask_stats(mask, img): | |
# mask is a prediction mask with pixel values in [0, 255] for probability in [0, 1] | |
# img is a RGB image with pixel values in [0, 255] | |
if mask.max() <= 127: | |
return [0, 0, 0, 0] | |
return [mask[mask>=128].mean()/256, img[:,:,0][mask>=128].mean()/256, | |
img[:,:,1][mask>=128].mean()/256, img[:,:,2][mask>=128].mean()/256] | |
def combine_masks(predicts): | |
# predicts: a dictionary of pixel probability, {TARGET: pred_prob} | |
pixel_preds = {} | |
target_area = {} | |
target_probs = {} | |
for target in predicts: | |
pred = predicts[target] | |
pred_region = np.where(pred > 0.1) | |
target_area[target] = 0 | |
target_probs[target] = 0 | |
for (i,j) in zip(*pred_region): | |
if (i,j) not in pixel_preds: | |
pixel_preds[(i,j)] = {} | |
pixel_preds[(i,j)][target] = pred[i,j] | |
target_area[target] += 1 | |
target_probs[target] += pred[i,j] | |
for target in predicts: | |
if target_area[target] == 0: | |
continue | |
target_probs[target] /= target_area[target] | |
# generate combined masks | |
combined_areas = {t: 0 for t in predicts} | |
for index in pixel_preds: | |
pred_target = sorted(pixel_preds[index].keys(), key=lambda t: pixel_preds[index][t], reverse=True)[0] | |
combined_areas[pred_target] += 1 | |
# discard targets with small areas | |
discard_targets = [] | |
for target in predicts: | |
if combined_areas[target] < 0.6 * target_area[target]: | |
discard_targets.append(target) | |
# keep the most confident target | |
most_confident_target = sorted(predicts.keys(), key=lambda t: target_probs[t], reverse=True)[0] | |
discard_targets = [t for t in discard_targets if t != most_confident_target] | |
masks = {t: np.zeros_like(predicts[t]).astype(np.uint8) for t in predicts if t not in discard_targets} | |
for index in pixel_preds: | |
candidates = [t for t in pixel_preds[index] if t not in discard_targets and pixel_preds[index][t] > 0.5] | |
if len(candidates) == 0: | |
continue | |
pred_target = max(candidates, key=lambda t: pixel_preds[index][t]) | |
masks[pred_target][index[0], index[1]] = 1 | |
return masks |