Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
import torch | |
import pickle | |
import subprocess | |
from mpi4py import MPI | |
import torch.distributed as dist | |
def apply_distributed(opt): | |
if opt['rank'] == 0: | |
hostname_cmd = ["hostname -I"] | |
result = subprocess.check_output(hostname_cmd, shell=True) | |
master_address = result.decode('utf-8').split()[0] | |
master_port = opt['PORT'] | |
else: | |
master_address = None | |
master_port = None | |
master_address = MPI.COMM_WORLD.bcast(master_address, root=0) | |
master_port = MPI.COMM_WORLD.bcast(master_port, root=0) | |
if torch.distributed.is_available() and opt['world_size'] > 1: | |
init_method_url = 'tcp://{}:{}'.format(master_address, master_port) | |
backend = 'nccl' | |
world_size = opt['world_size'] | |
rank = opt['rank'] | |
torch.distributed.init_process_group(backend=backend, | |
init_method=init_method_url, | |
world_size=world_size, | |
rank=rank) | |
def init_distributed(opt): | |
opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available() | |
if 'OMPI_COMM_WORLD_SIZE' not in os.environ: | |
# application was started without MPI | |
# default to single node with single process | |
opt['env_info'] = 'no MPI' | |
opt['world_size'] = 1 | |
opt['local_size'] = 1 | |
opt['rank'] = 0 | |
opt['local_rank'] = 0 | |
opt['master_address'] = '127.0.0.1' | |
opt['master_port'] = '8673' | |
else: | |
# application was started with MPI | |
# get MPI parameters | |
opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE']) | |
opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
# set up device | |
if not opt['CUDA']: | |
assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend' | |
opt['device'] = torch.device("cpu") | |
else: | |
torch.cuda.set_device(opt['local_rank']) | |
opt['device'] = torch.device("cuda", opt['local_rank']) | |
apply_distributed(opt) | |
return opt | |
def is_main_process(): | |
rank = 0 | |
if 'OMPI_COMM_WORLD_SIZE' in os.environ: | |
rank = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
return rank == 0 | |
def get_world_size(): | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def synchronize(): | |
""" | |
Helper function to synchronize (barrier) among all processes when | |
using distributed training | |
""" | |
if not dist.is_available(): | |
return | |
if not dist.is_initialized(): | |
return | |
world_size = dist.get_world_size() | |
rank = dist.get_rank() | |
if world_size == 1: | |
return | |
def _send_and_wait(r): | |
if rank == r: | |
tensor = torch.tensor(0, device="cuda") | |
else: | |
tensor = torch.tensor(1, device="cuda") | |
dist.broadcast(tensor, r) | |
while tensor.item() == 1: | |
time.sleep(1) | |
_send_and_wait(0) | |
# now sync on the main process | |
_send_and_wait(1) |