Spaces:
Running
on
Zero
Running
on
Zero
# -------------------------------------------------------- | |
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Modified by Xueyan Zou ([email protected]) | |
# -------------------------------------------------------- | |
import os | |
import sys | |
import torch | |
import logging | |
#import wandb | |
import random | |
import numpy as np | |
from utilities.arguments import load_opt_command | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# def init_wandb(args, job_dir, entity='YOUR_USER_NAME', project='YOUR_PROJECT_NAME', job_name='tmp'): | |
# wandb_dir = os.path.join(job_dir, 'wandb') | |
# os.makedirs(wandb_dir, exist_ok=True) | |
# runid = None | |
# if os.path.exists(f"{wandb_dir}/runid.txt"): | |
# runid = open(f"{wandb_dir}/runid.txt").read() | |
# wandb.init(project=project, | |
# name=job_name, | |
# dir=wandb_dir, | |
# entity=entity, | |
# resume="allow", | |
# id=runid, | |
# config={"hierarchical": True},) | |
# open(f"{wandb_dir}/runid.txt", 'w').write(wandb.run.id) | |
# wandb.config.update({k: args[k] for k in args if k not in wandb.config}) | |
def set_seed(seed: int = 42) -> None: | |
np.random.seed(seed) | |
random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
# When running on the CuDNN backend, two further options must be set | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
# Set a fixed value for the hash seed | |
os.environ["PYTHONHASHSEED"] = str(seed) | |
print(f"Random seed set as {seed}") | |
def main(args=None): | |
''' | |
[Main function for the entry point] | |
1. Set environment variables for distributed training. | |
2. Load the config file and set up the trainer. | |
''' | |
opt, cmdline_args = load_opt_command(args) | |
command = cmdline_args.command | |
if cmdline_args.user_dir: | |
absolute_user_dir = os.path.abspath(cmdline_args.user_dir) | |
opt['base_path'] = absolute_user_dir | |
# update_opt(opt, command) | |
world_size = 1 | |
if 'OMPI_COMM_WORLD_SIZE' in os.environ: | |
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
if opt['TRAINER'] == 'xdecoder': | |
from trainer import XDecoder_Trainer as Trainer | |
else: | |
assert False, "The trainer type: {} is not defined!".format(opt['TRAINER']) | |
set_seed(opt['RANDOM_SEED']) | |
trainer = Trainer(opt) | |
os.environ['TORCH_DISTRIBUTED_DEBUG']='DETAIL' | |
if command == "train": | |
# if opt['rank'] == 0 and opt['WANDB']: | |
# wandb.login(key=os.environ['WANDB_KEY']) | |
# init_wandb(opt, trainer.save_folder, job_name=trainer.save_folder) | |
trainer.train() | |
elif command == "evaluate": | |
trainer.eval() | |
else: | |
raise ValueError(f"Unknown command: {command}") | |
if __name__ == "__main__": | |
main() | |
sys.exit(0) | |