Spaces:
Build error
Build error
# -------------------------------------------------------- | |
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Xueyan Zou ([email protected]) | |
# -------------------------------------------------------- | |
import pickle | |
from distutils import log | |
import torch | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
from einops import rearrange, repeat | |
from timm.loss import SoftTargetCrossEntropy | |
soft_cross_entropy = SoftTargetCrossEntropy() | |
def is_dist_initialized(): | |
return torch.distributed.is_initialized() | |
def get_world_size(): | |
if is_dist_initialized(): | |
return torch.distributed.get_world_size() | |
return 1 | |
def get_rank(): | |
if is_dist_initialized(): | |
return dist.get_rank() | |
return 0 | |
def all_gather_grad(x): | |
if get_world_size() > 1: | |
all_x = [torch.zeros_like(x) for _ in range(get_world_size())] | |
torch.distributed.all_gather(all_x, x) | |
all_x[torch.distributed.get_rank()] = x | |
x = torch.cat(all_x, dim=0) | |
return x | |
def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1): | |
""" | |
Args: | |
image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256 | |
text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256 | |
Returns: | |
""" | |
# [B, L1, C], L1 = 1 | |
# image_feat = F.normalize(image_feat, dim=-1) | |
# [B, L2, C] | |
# text_feat = F.normalize(text_feat, dim=-1) | |
# HACK: normalize outside | |
# [B, L1, L2] | |
dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l') | |
# [B, L2, L1] | |
dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l') | |
batch = image_feat.shape[0] | |
img_len = image_feat.shape[1] | |
text_len = text_feat.shape[1] | |
# [B, L1, L2] | |
pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2') | |
# [B, L2, L1] | |
pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1') | |
image_x = rearrange(image_feat, 'b l c -> (b l) c') | |
text_x = rearrange(text_feat, 'b l c -> (b l) c') | |
logits_per_img = image_x @ all_gather_grad(text_x).t() | |
logits_per_text = text_x @ all_gather_grad(image_x).t() | |
# get label globally | |
# [B, L1, B, L2, W] | |
labels_per_img = F.one_hot( | |
torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(), | |
num_classes=get_world_size()).to(image_x.dtype) | |
labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat( | |
torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1') | |
# [BxL1, WxBxL2] | |
labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)') | |
# [B, L2, B, L1, W] | |
labels_per_text = F.one_hot( | |
torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(), | |
num_classes=get_world_size()).to(text_x.dtype) | |
labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat( | |
torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1') | |
# [BxL2, WxBxL1] | |
labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)') | |
logit_scale = temperature.exp().clamp(max=100) | |
loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img) | |
loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text) | |
loss = 0.5 * (loss_img + loss_text) | |
return loss | |
def vl_contrastive_loss(image_feat, text_feat, temperature=1): | |
# if image_id or text_id is None, it should be None across all GPUs | |
# image_feat = F.normalize(image_feat, dim=1) | |
# text_feat = F.normalize(text_feat, dim=1) | |
# handle normalization outside | |
# add the following 4 lines | |
image_feat = all_gather_grad(image_feat) | |
text_feat = all_gather_grad(text_feat) | |
logits = torch.matmul(image_feat, text_feat.t()) | |
logit_scale = temperature.exp().clamp(max=100) | |
gt = torch.arange(logits.shape[0], device=logits.device) | |
loss1 = F.cross_entropy(logit_scale * logits, gt) | |
loss2 = F.cross_entropy(logit_scale * logits.t(), gt) | |
return (loss1 + loss2) / 2 # scale it up by the number of GPUs | |
def all_gather_pickle(data, device): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to(device) | |
# obtain Tensor size of each rank | |
local_size = torch.LongTensor([tensor.numel()]).cuda() | |
size_list = [torch.LongTensor([0]).cuda() for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,)).cuda()) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)).cuda() | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def all_gather_arbitary_tensor(tensor): | |
if get_world_size() > 1: | |
device = tensor.device | |
tensor_batch = all_gather_pickle(tensor.cpu(), device) | |
tensor_batch = [x.to(device) for x in tensor_batch] | |
tensor_batch[torch.distributed.get_rank()] = tensor | |
tensor_batch = torch.cat(tensor_batch, dim=0) | |
else: | |
tensor_batch = tensor | |
return tensor_batch | |
def ql_contrastive_loss(image_feat, text_feat, temperature=1): | |
# add the following 4 lines | |
image_feat = all_gather_arbitary_tensor(image_feat) | |
text_feat = all_gather_arbitary_tensor(text_feat) | |
logits = torch.matmul(image_feat, text_feat.t()) | |
logit_scale = temperature.exp().clamp(max=100) | |
gt = torch.arange(logits.shape[0], device=logits.device) | |
loss1 = F.cross_entropy(logit_scale * logits, gt) | |
loss2 = F.cross_entropy(logit_scale * logits.t(), gt) | |
return (loss1 + loss2) / 2 # scale it up by the number of GPUs | |
def vl_similarity(image_feat, text_feat, temperature=1): | |
# Only support single GPU for now. | |
logits = torch.matmul(image_feat, text_feat.t()) | |
logits = temperature.exp().clamp(max=100) * logits | |
return logits | |
def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1): | |
# add the following 4 lines | |
image_feat = all_gather_arbitary_tensor(image_feat) | |
text_feat = all_gather_arbitary_tensor(text_feat) | |
text_hash_batch = all_gather_pickle(text_hash, text_feat.device) | |
text_hash_all = torch.cat(text_hash_batch) | |
text_hash_all_unique = torch.unique(text_hash_all).tolist() | |
gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device) | |
text_hash_all = text_hash_all.tolist() | |
text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique]) | |
for idx, txt in enumerate(text_hash_all): | |
gt[idx][text_hash_all_unique.index(txt)] = 1 | |
logits = torch.matmul(image_feat, text_feat_unique.t()) | |
logits = logits*temperature.exp().clamp(max=100) | |
loss_img = soft_cross_entropy(logits, gt) | |
loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True)) | |
loss = 0.7 * loss_img + 0.3 * loss_text | |
return loss | |
def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training): | |
# add the following 4 lines | |
image_feat = all_gather_grad(image_feat_inp.contiguous()) | |
text_feat = all_gather_grad(text_feat_inp.contiguous()) | |
image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7) | |
text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7) | |
temperature = lang_enc.logit_scale | |
logits = torch.matmul(image_feat, text_feat.t()) | |
logit_scale = temperature.exp().clamp(max=100) | |
gt = torch.arange(logits.shape[0], device=logits.device) | |
loss1 = F.cross_entropy(logit_scale * logits, gt) | |
loss2 = F.cross_entropy(logit_scale * logits.t(), gt) | |
return (loss1 + loss2) / 2 # scale it up by the number of GPUs |