Core-AI-IMAGE / modeling /BaseModel.py
Leyogho's picture
Core
edebe10
import os
import logging
import torch
import torch.nn as nn
from utilities.model import align_and_update_state_dicts
from utilities.distributed import init_distributed
from utilities.arguments import load_opt_from_config_files
import huggingface_hub
logger = logging.getLogger(__name__)
class BaseModel(nn.Module):
def __init__(self, opt, module: nn.Module):
super(BaseModel, self).__init__()
self.opt = opt
self.model = module
def forward(self, *inputs, **kwargs):
outputs = self.model(*inputs, **kwargs)
return outputs
def save_pretrained(self, save_dir):
torch.save(self.model.state_dict(), os.path.join(save_dir, "model_state_dict.pt"))
def from_pretrained(self, pretrained, filename: str = "biomedparse_v1.pt",
local_dir: str = "./pretrained", config_dir: str = "./configs"):
if pretrained.startswith("hf_hub:"):
hub_name = pretrained.split(":")[1]
huggingface_hub.hf_hub_download(hub_name, filename=filename,
local_dir=local_dir)
huggingface_hub.hf_hub_download(hub_name, filename="config.yaml",
local_dir=config_dir)
load_dir = os.path.join(local_dir, filename)
else:
load_dir = pretrained
state_dict = torch.load(load_dir, map_location=self.opt['device'])
state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict)
self.model.load_state_dict(state_dict, strict=False)
return self