Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import logging | |
import torch | |
import torch.nn as nn | |
from utilities.model import align_and_update_state_dicts | |
from utilities.distributed import init_distributed | |
from utilities.arguments import load_opt_from_config_files | |
import huggingface_hub | |
logger = logging.getLogger(__name__) | |
class BaseModel(nn.Module): | |
def __init__(self, opt, module: nn.Module): | |
super(BaseModel, self).__init__() | |
self.opt = opt | |
self.model = module | |
def forward(self, *inputs, **kwargs): | |
outputs = self.model(*inputs, **kwargs) | |
return outputs | |
def save_pretrained(self, save_dir): | |
torch.save(self.model.state_dict(), os.path.join(save_dir, "model_state_dict.pt")) | |
def from_pretrained(self, pretrained, filename: str = "biomedparse_v1.pt", | |
local_dir: str = "./pretrained", config_dir: str = "./configs"): | |
if pretrained.startswith("hf_hub:"): | |
hub_name = pretrained.split(":")[1] | |
huggingface_hub.hf_hub_download(hub_name, filename=filename, | |
local_dir=local_dir) | |
huggingface_hub.hf_hub_download(hub_name, filename="config.yaml", | |
local_dir=config_dir) | |
load_dir = os.path.join(local_dir, filename) | |
else: | |
load_dir = pretrained | |
state_dict = torch.load(load_dir, map_location=self.opt['device']) | |
state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict) | |
self.model.load_state_dict(state_dict, strict=False) | |
return self |