File size: 7,257 Bytes
cef1afc
 
 
 
 
 
 
 
c811a04
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
from torch import nn
from diffusers import AutoencoderKL
from einops import rearrange
from torch import Tensor
from torch.nn import functional


from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder

class Downsample3D(nn.Module):
    def __init__(self, dims, in_channels: int, out_channels: int, kernel_size: int = 3, padding: int = 1):
        super().__init__()
        stride: int = 2
        self.padding = padding
        self.in_channels = in_channels
        self.dims = dims
        self.conv = make_conv_nd(
            dims=dims,
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
        )

    def forward(self, x, downsample_in_time=True):
        conv = self.conv
        if self.padding == 0:
            if self.dims == 2:
                padding = (0, 1, 0, 1)
            else:
                padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0)

            x = functional.pad(x, padding, mode="constant", value=0)

            if self.dims == (2, 1) and not downsample_in_time:
                return conv(x, skip_time_conv=True)

        return conv(x)



def vae_encode(media_items: Tensor, vae: AutoencoderKL, split_size: int = 1, vae_per_channel_normalize=False) -> Tensor:
    """
    Encodes media items (images or videos) into latent representations using a specified VAE model.
    The function supports processing batches of images or video frames and can handle the processing
    in smaller sub-batches if needed.

    Args:
        media_items (Tensor): A torch Tensor containing the media items to encode. The expected
            shape is (batch_size, channels, height, width) for images or (batch_size, channels,
            frames, height, width) for videos.
        vae (AutoencoderKL): An instance of the `AutoencoderKL` class from the `diffusers` library,
            pre-configured and loaded with the appropriate model weights.
        split_size (int, optional): The number of sub-batches to split the input batch into for encoding.
            If set to more than 1, the input media items are processed in smaller batches according to
            this value. Defaults to 1, which processes all items in a single batch.

    Returns:
        Tensor: A torch Tensor of the encoded latent representations. The shape of the tensor is adjusted
            to match the input shape, scaled by the model's configuration.

    Examples:
        >>> import torch
        >>> from diffusers import AutoencoderKL
        >>> vae = AutoencoderKL.from_pretrained('your-model-name')
        >>> images = torch.rand(10, 3, 8 256, 256)  # Example tensor with 10 videos of 8 frames.
        >>> latents = vae_encode(images, vae)
        >>> print(latents.shape)  # Output shape will depend on the model's latent configuration.

    Note:
        In case of a video, the function encodes the media item frame-by frame.
    """
    is_video_shaped = media_items.dim() == 5
    batch_size, channels = media_items.shape[0:2]

    if channels != 3:
        raise ValueError(f"Expects tensors with 3 channels, got {channels}.")

    if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
        media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
    if split_size > 1:
        if len(media_items) % split_size != 0:
            raise ValueError("Error: The batch size must be divisible by 'train.vae_bs_split")
        encode_bs = len(media_items) // split_size
        # latents = [vae.encode(image_batch).latent_dist.sample() for image_batch in media_items.split(encode_bs)]
        latents = []
        for image_batch in media_items.split(encode_bs):
            latents.append(vae.encode(image_batch).latent_dist.sample())
        latents = torch.cat(latents, dim=0)
    else:
        latents = vae.encode(media_items).latent_dist.sample()

    latents = normalize_latents(latents, vae, vae_per_channel_normalize)
    if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
        latents = rearrange(latents, "(b n) c h w -> b c n h w", b=batch_size)
    return latents


def vae_decode(
    latents: Tensor, vae: AutoencoderKL, is_video: bool = True, split_size: int = 1, vae_per_channel_normalize=False
) -> Tensor:
    is_video_shaped = latents.dim() == 5
    batch_size = latents.shape[0]

    if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
        latents = rearrange(latents, "b c n h w -> (b n) c h w")
    if split_size > 1:
        if len(latents) % split_size != 0:
            raise ValueError("Error: The batch size must be divisible by 'train.vae_bs_split")
        encode_bs = len(latents) // split_size
        image_batch = [
            _run_decoder(latent_batch, vae, is_video, vae_per_channel_normalize)
            for latent_batch in latents.split(encode_bs)
        ]
        images = torch.cat(image_batch, dim=0)
    else:
        images = _run_decoder(latents, vae, is_video, vae_per_channel_normalize)

    if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
        images = rearrange(images, "(b n) c h w -> b c n h w", b=batch_size)
    return images


def _run_decoder(latents: Tensor, vae: AutoencoderKL, is_video: bool, vae_per_channel_normalize=False) -> Tensor:
    if isinstance(vae, (CausalVideoAutoencoder)):
        *_, fl, hl, wl = latents.shape
        temporal_scale, spatial_scale, _ = get_vae_size_scale_factor(vae)
        latents = latents.to(vae.dtype)
        image = vae.decode(
            un_normalize_latents(latents, vae, vae_per_channel_normalize),
            return_dict=False,
            target_shape=(1, 3, fl * temporal_scale if is_video else 1, hl * spatial_scale, wl * spatial_scale),
        )[0]
    else:
        image = vae.decode(
            un_normalize_latents(latents, vae, vae_per_channel_normalize),
            return_dict=False,
        )[0]
    return image


def get_vae_size_scale_factor(vae: AutoencoderKL) -> float:
    if isinstance(vae, CausalVideoAutoencoder):
        spatial = vae.spatial_downscale_factor
        temporal = vae.temporal_downscale_factor
    else:
        down_blocks = len([block for block in vae.encoder.down_blocks if isinstance(block.downsample, Downsample3D)])
        spatial = vae.config.patch_size * 2**down_blocks
        temporal = vae.config.patch_size_t * 2 ** down_blocks if isinstance(vae) else 1

    return (temporal, spatial, spatial)


def normalize_latents(latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False) -> Tensor:
    return (
        (latents - vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1))
        / vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
        if vae_per_channel_normalize
        else latents * vae.config.scaling_factor
    )


def un_normalize_latents(latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False) -> Tensor:
    return (
        latents * vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
        + vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
        if vae_per_channel_normalize
        else latents / vae.config.scaling_factor
    )