File size: 18,359 Bytes
f1a05f0
 
7e6b7ab
f1a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc65614
 
 
f1a05f0
 
fc65614
 
 
f1a05f0
 
 
 
 
 
 
fc65614
f1a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc65614
f1a05f0
 
 
fc65614
f1a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468d42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc65614
f1a05f0
 
 
 
 
 
 
 
 
 
 
 
 
fc65614
f1a05f0
 
fc65614
 
 
 
 
 
 
 
f1a05f0
 
 
 
 
 
 
fc65614
 
 
 
 
 
f1a05f0
 
 
 
 
 
 
 
 
 
 
fc65614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520e8b2
fc65614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520e8b2
fc65614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a05f0
fc65614
 
 
 
f1a05f0
fc65614
 
75b6e6e
fc65614
f1a05f0
 
 
fc65614
 
 
 
f1a05f0
 
 
 
 
 
 
 
 
ccc25b7
f1a05f0
 
 
 
 
 
 
 
 
 
 
 
fc65614
f1a05f0
 
 
 
 
 
fc65614
 
 
f1a05f0
 
 
 
 
 
 
fc65614
a73f2f6
 
 
 
fc65614
a73f2f6
fc65614
 
623c312
fc65614
 
 
623c312
a73f2f6
 
 
 
 
fc65614
 
623c312
a73f2f6
 
 
 
 
fc65614
 
623c312
fc65614
 
 
 
 
 
 
623c312
a73f2f6
 
 
 
 
fc65614
 
 
 
 
 
 
 
 
 
 
 
 
 
a73f2f6
623c312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520e8b2
 
623c312
 
 
 
 
 
 
 
f1a05f0
fc65614
a73f2f6
fc65614
 
 
 
a73f2f6
 
 
 
fc65614
 
a73f2f6
 
fc65614
a73f2f6
fc65614
 
 
 
 
a73f2f6
fc65614
 
 
a73f2f6
 
 
fc65614
 
a73f2f6
fc65614
a73f2f6
fc65614
 
 
a73f2f6
 
 
 
 
fc65614
a73f2f6
 
 
 
fc65614
 
a73f2f6
 
fc65614
a73f2f6
fc65614
 
 
 
 
a73f2f6
fc65614
 
 
a73f2f6
 
 
fc65614
 
a73f2f6
fc65614
a73f2f6
fc65614
a73f2f6
fc65614
 
 
 
 
 
 
 
 
a73f2f6
f1a05f0
 
fc65614
 
 
 
 
 
 
 
 
f1a05f0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import gradio as gr
import torch
from huggingface_hub import snapshot_download

from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os

# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")

# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
    snapshot_download(
        "Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
    )

# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def load_vae(vae_dir):
    vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
    vae_config_path = vae_dir / "config.json"
    with open(vae_config_path, "r") as f:
        vae_config = json.load(f)
    vae = CausalVideoAutoencoder.from_config(vae_config)
    vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
    vae.load_state_dict(vae_state_dict)
    return vae.cuda().to(torch.bfloat16)


def load_unet(unet_dir):
    unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
    unet_config_path = unet_dir / "config.json"
    transformer_config = Transformer3DModel.load_config(unet_config_path)
    transformer = Transformer3DModel.from_config(transformer_config)
    unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
    transformer.load_state_dict(unet_state_dict, strict=True)
    return transformer.to(device)


def load_scheduler(scheduler_dir):
    scheduler_config_path = scheduler_dir / "scheduler_config.json"
    scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
    return RectifiedFlowScheduler.from_config(scheduler_config)


# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
    h, w, _ = frame.shape
    aspect_ratio_target = target_width / target_height
    aspect_ratio_frame = w / h
    if aspect_ratio_frame > aspect_ratio_target:
        new_width = int(h * aspect_ratio_target)
        x_start = (w - new_width) // 2
        frame_cropped = frame[:, x_start : x_start + new_width]
    else:
        new_height = int(w / aspect_ratio_target)
        y_start = (h - new_height) // 2
        frame_cropped = frame[y_start : y_start + new_height, :]
    frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
    return frame_resized


def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
    image = Image.open(image_path).convert("RGB")
    image_np = np.array(image)
    frame_resized = center_crop_and_resize(image_np, target_height, target_width)
    frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
    frame_tensor = (frame_tensor / 127.5) - 1.0
    return frame_tensor.unsqueeze(0).unsqueeze(2)


# Preset options for resolution and frame configuration
preset_options = [
    {"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
    {"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
    {"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
    {"label": "992x608, 65 frames", "width": 992, "height": 608, "num_frames": 65},
    {"label": "896x608, 73 frames", "width": 896, "height": 608, "num_frames": 73},
    {"label": "896x544, 81 frames", "width": 896, "height": 544, "num_frames": 81},
    {"label": "832x544, 89 frames", "width": 832, "height": 544, "num_frames": 89},
    {"label": "800x512, 97 frames", "width": 800, "height": 512, "num_frames": 97},
    {"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
    {"label": "800x480, 105 frames", "width": 800, "height": 480, "num_frames": 105},
    {"label": "736x480, 113 frames", "width": 736, "height": 480, "num_frames": 113},
    {"label": "704x480, 121 frames", "width": 704, "height": 480, "num_frames": 121},
    {"label": "704x448, 129 frames", "width": 704, "height": 448, "num_frames": 129},
    {"label": "672x448, 137 frames", "width": 672, "height": 448, "num_frames": 137},
    {"label": "640x416, 153 frames", "width": 640, "height": 416, "num_frames": 153},
    {"label": "672x384, 161 frames", "width": 672, "height": 384, "num_frames": 161},
    {"label": "640x384, 169 frames", "width": 640, "height": 384, "num_frames": 169},
    {"label": "608x384, 177 frames", "width": 608, "height": 384, "num_frames": 177},
    {"label": "576x384, 185 frames", "width": 576, "height": 384, "num_frames": 185},
    {"label": "608x352, 193 frames", "width": 608, "height": 352, "num_frames": 193},
    {"label": "576x352, 201 frames", "width": 576, "height": 352, "num_frames": 201},
    {"label": "544x352, 209 frames", "width": 544, "height": 352, "num_frames": 209},
    {"label": "512x352, 225 frames", "width": 512, "height": 352, "num_frames": 225},
    {"label": "512x352, 233 frames", "width": 512, "height": 352, "num_frames": 233},
    {"label": "544x320, 241 frames", "width": 544, "height": 320, "num_frames": 241},
    {"label": "512x320, 249 frames", "width": 512, "height": 320, "num_frames": 249},
    {"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
    {"label": "Custom", "height": None, "width": None, "num_frames": None},
]


# Function to toggle visibility of sliders based on preset selection
def preset_changed(preset):
    if preset != "Custom":
        selected = next(item for item in preset_options if item["label"] == preset)
        return (
            selected["height"],
            selected["width"],
            selected["num_frames"],
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )
    else:
        return (
            None,
            None,
            None,
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
        )


# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)

pipeline = XoraVideoPipeline(
    transformer=unet,
    patchifier=patchifier,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    scheduler=scheduler,
    vae=vae,
).to(device)


def generate_video_from_text(
    prompt="",
    negative_prompt="",
    seed=171198,
    num_inference_steps=40,
    guidance_scale=3,
    height=512,
    width=768,
    num_frames=121,
    frame_rate=25,
    progress=gr.Progress(),
):
    if len(prompt.strip()) < 50:
        raise gr.Error(
            "Prompt must be at least 50 characters long. Please provide more details for the best results.",
            duration=5,
        )

    sample = {
        "prompt": prompt,
        "prompt_attention_mask": None,
        "negative_prompt": negative_prompt,
        "negative_prompt_attention_mask": None,
        "media_items": None,
    }

    generator = torch.Generator(device="cpu").manual_seed(seed)

    def gradio_progress_callback(self, step, timestep, kwargs):
        progress((step + 1) / num_inference_steps)

    images = pipeline(
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=1,
        guidance_scale=guidance_scale,
        generator=generator,
        output_type="pt",
        height=height,
        width=width,
        num_frames=num_frames,
        frame_rate=frame_rate,
        **sample,
        is_video=True,
        vae_per_channel_normalize=True,
        conditioning_method=ConditioningMethod.FIRST_FRAME,
        mixed_precision=True,
        callback_on_step_end=gradio_progress_callback,
    ).images

    output_path = tempfile.mktemp(suffix=".mp4")
    print(images.shape)
    video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
    video_np = (video_np * 255).astype(np.uint8)
    height, width = video_np.shape[1:3]
    out = cv2.VideoWriter(
        output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
    )
    for frame in video_np[..., ::-1]:
        out.write(frame)
    out.release()

    return output_path


def generate_video_from_image(
    image_path,
    prompt="",
    negative_prompt="",
    seed=171198,
    num_inference_steps=40,
    guidance_scale=3,
    height=512,
    width=768,
    num_frames=121,
    frame_rate=25,
    progress=gr.Progress(),
):
    if len(prompt.strip()) < 50:
        raise gr.Error(
            "Prompt must be at least 50 characters long. Please provide more details for the best results.",
            duration=5,
        )

    if not image_path:
        raise gr.Error("Please provide an input image.", duration=5)

    media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device)

    sample = {
        "prompt": prompt,
        "prompt_attention_mask": None,
        "negative_prompt": negative_prompt,
        "negative_prompt_attention_mask": None,
        "media_items": media_items,
    }

    generator = torch.Generator(device="cpu").manual_seed(seed)

    def gradio_progress_callback(self, step, timestep, kwargs):
        progress((step + 1) / num_inference_steps)

    images = pipeline(
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=1,
        guidance_scale=guidance_scale,
        generator=generator,
        output_type="pt",
        height=height,
        width=width,
        num_frames=num_frames,
        frame_rate=frame_rate,
        **sample,
        is_video=True,
        vae_per_channel_normalize=True,
        conditioning_method=ConditioningMethod.FIRST_FRAME,
        mixed_precision=True,
        callback_on_step_end=gradio_progress_callback,
    ).images

    output_path = tempfile.mktemp(suffix=".mp4")
    video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
    video_np = (video_np * 255).astype(np.uint8)
    height, width = video_np.shape[1:3]
    out = cv2.VideoWriter(
        output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
    )
    for frame in video_np[..., ::-1]:
        out.write(frame)
    out.release()

    return output_path


def create_advanced_options():
    with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
        seed = gr.Slider(
            label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=171198
        )
        inference_steps = gr.Slider(
            label="4.2 Inference Steps", minimum=1, maximum=100, step=1, value=40
        )
        guidance_scale = gr.Slider(
            label="4.3 Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.0
        )

        height_slider = gr.Slider(
            label="4.4 Height",
            minimum=256,
            maximum=1024,
            step=64,
            value=704,
            visible=False,
        )
        width_slider = gr.Slider(
            label="4.5 Width",
            minimum=256,
            maximum=1024,
            step=64,
            value=1216,
            visible=False,
        )
        num_frames_slider = gr.Slider(
            label="4.5 Number of Frames",
            minimum=1,
            maximum=200,
            step=1,
            value=41,
            visible=False,
        )
        frame_rate = gr.Slider(
            label="4.7 Frame Rate",
            minimum=1,
            maximum=60,
            step=1,
            value=25,
            visible=False,
        )

        return [
            seed,
            inference_steps,
            guidance_scale,
            height_slider,
            width_slider,
            num_frames_slider,
            frame_rate,
        ]


# Define the Gradio interface with tabs
with gr.Blocks(theme=gr.themes.Soft()) as iface:
    with gr.Row(elem_id="title-row"):
        gr.Markdown(
            """
        <div style="text-align: center; margin-bottom: 1em">
            <h1 style="font-size: 2.5em; font-weight: 600; margin: 0.5em 0;">Video Generation with LTX Video</h1>
        </div>
        """
        )
    with gr.Accordion(
        " ๐Ÿ“– Tips for Best Results", open=False, elem_id="instructions-accordion"
    ):
        gr.Markdown(
            """
        ๐Ÿ“ Prompt Engineering

        When writing prompts, focus on detailed, chronological descriptions of actions and scenes. Include specific movements, appearances, camera angles, and environmental details - all in a single flowing paragraph. Start directly with the action, and keep descriptions literal and precise. Think like a cinematographer describing a shot list. Keep within 200 words.
        For best results, build your prompts using this structure:

        - Start with main action in a single sentence
        - Add specific details about movements and gestures
        - Describe character/object appearances precisely
        - Include background and environment details
        - Specify camera angles and movements
        - Describe lighting and colors
        - Note any changes or sudden events

        See examples for more inspiration.

        ๐ŸŽฎ Parameter Guide

        - Resolution Preset: Higher resolutions for detailed scenes, lower for faster generation and simpler scenes
        - Seed: Save seed values to recreate specific styles or compositions you like
        - Guidance Scale: Higher values (5-7) for accurate prompt following, lower values (3-5) for more creative freedom
        - Inference Steps: More steps (40+) for quality, fewer steps (20-30) for speed
        """
        )

    with gr.Tabs():
        # Text to Video Tab
        with gr.TabItem("Text to Video"):
            with gr.Row():
                with gr.Column():
                    txt2vid_prompt = gr.Textbox(
                        label="Step 1: Enter Your Prompt",
                        placeholder="Describe the video you want to generate (minimum 50 characters)...",
                        value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains. The sky is clear with a few wispy clouds, and the sunlight glistens on the motorcycle as it speeds along.",
                        lines=5,
                    )
                    txt2vid_negative_prompt = gr.Textbox(
                        label="Step 2: Enter Negative Prompt (Optional)",
                        placeholder="Describe what you don't want in the video...",
                        value="worst quality, inconsistent motion...",
                        lines=2,
                    )

                    txt2vid_preset = gr.Dropdown(
                        choices=[p["label"] for p in preset_options],
                        value="1216x704, 41 frames",
                        label="Step 3: Choose Resolution Preset",
                    )

                    txt2vid_advanced = create_advanced_options()
                    txt2vid_generate = gr.Button(
                        "Step 5: Generate Video", variant="primary", size="lg"
                    )

                with gr.Column():
                    txt2vid_output = gr.Video(label="Step 6: Generated Output")

        # Image to Video Tab
        with gr.TabItem("Image to Video"):
            with gr.Row():
                with gr.Column():
                    img2vid_image = gr.Image(
                        type="filepath",
                        label="Step 1: Upload Input Image",
                        elem_id="image_upload",
                    )
                    img2vid_prompt = gr.Textbox(
                        label="Step 2: Enter Your Prompt",
                        placeholder="Describe how you want to animate the image (minimum 50 characters)...",
                        value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery...",
                        lines=5,
                    )
                    img2vid_negative_prompt = gr.Textbox(
                        label="Step 3: Enter Negative Prompt (Optional)",
                        placeholder="Describe what you don't want in the video...",
                        value="worst quality, inconsistent motion...",
                        lines=2,
                    )

                    img2vid_preset = gr.Dropdown(
                        choices=[p["label"] for p in preset_options],
                        value="1216x704, 41 frames",
                        label="Step 4: Choose Resolution Preset",
                    )

                    img2vid_advanced = create_advanced_options()
                    img2vid_generate = gr.Button(
                        "Step 6: Generate Video", variant="primary", size="lg"
                    )

                with gr.Column():
                    img2vid_output = gr.Video(label="Step 7: Generated Output")

    # [Previous event handlers remain the same]
    txt2vid_preset.change(
        fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[4:]
    )

    txt2vid_generate.click(
        fn=generate_video_from_text,
        inputs=[txt2vid_prompt, txt2vid_negative_prompt, *txt2vid_advanced],
        outputs=txt2vid_output,
    )

    img2vid_preset.change(
        fn=preset_changed, inputs=[img2vid_preset], outputs=img2vid_advanced[4:]
    )

    img2vid_generate.click(
        fn=generate_video_from_image,
        inputs=[
            img2vid_image,
            img2vid_prompt,
            img2vid_negative_prompt,
            *img2vid_advanced,
        ],
        outputs=img2vid_output,
    )

iface.launch(share=True)